skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pernet, Clement"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We generalize Hermite interpolation with error correction, which is the methodology for multiplicity algebraic error correction codes, to Hermite interpolation of a rational function over a field K from function and function derivative values. We present an interpolation algorithm that can locate and correct <= E errors at distinct arguments y in K where at least one of the values or values of a derivative is incorrect. The upper bound E for the number of such y is input. Our algorithm sufficiently oversamples the rational function to guarantee a unique interpolant. We sample (f/g)^(j)(y[i]) for 0 <= j <= L[i], 1 <= i <= n, y[i] distinct, where (f/g)^(j) is the j-th derivative of the rational function f/g, f, g in K[x], GCD(f,g)=1, g <= 0, and where N = (L[1]+1)+...+(L[n]+1) >= C + D + 1 + 2(L[1]+1) + ... + 2(L[E]+1) where C is an upper bound for deg(f) and D an upper bound for deg(g), which are input to our algorithm. The arguments y[i] can be poles, which is truly or falsely indicated by a function value infinity with the corresponding L[i]=0. Our results remain valid for fields K of characteristic >= 1 + max L[i]. Our algorithm has the same asymptotic arithmetic complexity as that for classical Hermite interpolation, namely soft-O(N). For polynomials, that is, g=1, and a uniform derivative profile L[1] = ... = L[n], our algorithm specializes to the univariate multiplicity code decoder that is based on the 1986 Welch-Berlekamp algorithm. 
    more » « less