- Award ID(s):
- 1717100
- Publication Date:
- NSF-PAR ID:
- 10193344
- Journal Name:
- Proc. Computer Algebra in Scientific Computing (CASC) 2020
- Sponsoring Org:
- National Science Foundation
More Like this
-
Amir Hashemi (Ed.)We present Hermite polynomial interpolation algorithms that for a sparse univariate polynomial f with coefficients from a field compute the polynomial from fewer points than the classical algorithms. If the interpolating polynomial f has t terms, our algorithms, require argument/value triples (w^i, f(w^i), f'(w^i)) for i=0,...,t + ceiling( (t+1)/2 ) - 1, where w is randomly sampled and the probability of a correct output is determined from a degree bound for f. With f' we denote the derivative of f. Our algorithms generalize to multivariate polynomials, higher derivatives and sparsity with respect to Chebyshev polynomial bases. We have algorithms that can correct errors in the points by oversampling at a limited number of good values. If an upper bound B >= t for the number of terms is given, our algorithms use a randomly selected w and, with high probability, ceiling( t/2 ) + B triples, but then never return an incorrect output. The algorithms are based on Prony's sparse interpolation algorithm. While Prony's algorithm and its variants use fewer values, namely, 2t+1 and t+B values f(w^i), respectively, they need more arguments w^i. The situation mirrors that in algebraic error correcting codes, where the Reed-Solomon code requires fewer values thanmore »
-
Multiplicity code decoders are based on Hermite polynomial interpolation with error correction. In order to have a unique Hermite interpolant one assumes that the field of scalars has characteristic 0 or >= k+1, where k is the maximum order of the derivatives in the list of values of the polynomial and its derivatives which are interpolated. For scalar fields of characteristic k+1, the minimum number of values for interpolating a polynomial of degree <= D is D+1+2E(k+1) when <= E of the values are erroneous. Here we give an error-correcting Hermite interpolation algorithm that can tolerate more errors, assuming that the characteristic of the scalar field is either 0 or >= D+1. Our algorithm requires (k+1)D + 1 - (k+1)k/2 + 2E values. As an example, we consider k = 2. If the error ratio (number of errors)/(number of evaluations) <= 0.16, our new algorithm requires ceiling( (4+7/17) D - (1+8 /17) ) values, while multiplicity decoding requires 25D+25 values. If the error ratio is <= 0.2, our algorithm requires 5D-2 evaluations over characteristic 0 or >= D+1, while multiplicity decoding for an error ratio 0.2 over fields of characteristic 3 is not possible for D >= 3. Our algorithmmore »
-
Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in
and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ , by showing that$\mathcal { C}$ admits non-trivial satisfiability and/or$\mathcal { C}$ # SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial# SAT algorithm for a circuit class . Say that a symmetric Boolean function${\mathcal C}$ f (x 1,…,x n ) issparse if it outputs 1 onO (1) values of . We show that for every sparse${\sum }_{i} x_{i}$ f , and for all “typical” , faster$\mathcal { C}$ # SAT algorithms for circuits imply lower bounds against the circuit class$\mathcal { C}$ , which may be$f \circ \mathcal { C}$ stronger than itself. In particular:$\mathcal { C}$ # SAT algorithms forn k -size -circuits running in 2$\mathcal { C}$ n /n k time (for allk ) implyN E X P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ # SAT algorithms for -size$2^{n^{{\varepsilon }}}$ -circuits running in$\mathcal { C}$ time (for some$2^{n-n^{{\varepsilon }}}$ ε > 0) implyQ u a s i -N P does not have -circuits of polynomial size.$(f \circ \mathcal { C})$ Applying
# SAT algorithms from the literature, one immediate corollary of our results is thatQ u a s i -N P does not haveE M A J ∘A C C 0∘T H R circuits of polynomialmore » -
A gr e at d e al of i nt er e st s urr o u n d s t h e u s e of tr a n s cr a ni al dir e ct c urr e nt sti m ul ati o n (t D C S) t o a u g m e nt c o g niti v e tr ai ni n g. H o w e v er, eff e ct s ar e i n c o n si st e nt a cr o s s st u di e s, a n d m et aa n al yti c e vi d e n c e i s mi x e d, e s p e ci all y f o r h e alt h y, y o u n g a d ult s. O n e m aj or s o ur c e of t hi s i n c o n si st e n c y i s i n di vi d u al diff er e n c e s a m o n g t h e pmore »
-
F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓more »