skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peters, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-eddy simulation (LES) runs are performed to understand the influence of a one-dimensional (1D) surface heating heterogeneity on organized vertical motions within and above the atmospheric boundary layer (ABL). Two knowledge gaps are of particular interest: i) how do updrafts develop in the low free troposphere, and ii) what parameters control the updraft location and strength within the ABL? LES runs are performed for a shear-influenced, unstable ABL driven by geostrophic winds of the same magnitude but in various directions relative to a prescribed 1D surface-heat-flux heterogeneity. Quasi-steady-state LES results are phase-averaged over time and the horizontal dimension perpendicular to the surface-heat-flux gradient to quantify secondary circulations. Regarding the first knowledge gap, results show that organized vertical motions in the low free troposphere can be modeled as two-dimensional (2D) stationary gravity waves, whose amplitudes depend on ABL updraft strength and instability development within the free troposphere. Regarding the second knowledge gap, results show that organized updrafts within the ABL may form either above relatively warm surfaces or downwind of warm-to-cool transitions. These different locations are well explained by both the relative contributions to secondary circulations from phase-averaged horizontal and vertical velocity fluctuations and the relative importance of horizontal advection and turbulent transport in the phase-averaged internal energy fluctuation equation. The main balances associated with each updraft location are used to propose empirical models of updraft strength, and it is shown that the presence of sufficiently strong organized vertical motions can cause a non-negligible reduction in near-surface eddy viscosity. 
    more » « less
  2. Notes from the field In July and August of 2023, we visited Costa Rica to examine some of the country’s peatlands. The purpose of our trip was to collect peat samples from a variety of wetland habitats from the coast to the highlands for future analysis. We summarize our observations in this short essay. Editorial review only 
    more » « less
  3. null (Ed.)
  4. The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. 
    more » « less