skip to main content

Search for: All records

Creators/Authors contains: "Pfirman, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this perspective on the future of the Arctic, we explore actions taken to mitigate warming and adapt to change since the Paris agreement on the temperature threshold that should not be exceeded in order to avoid dangerous interference with the climate system. Although 5 years may seem too short a time for implementation of major interventions, it actually is a considerable time span given the urgency at which we must act if we want to avoid crossing the 1.5 to <2 °C global warming threshold. Actions required include co-production of research exploring possible futures; supporting Indigenous rights holders’ and stakeholders’ discourse on desired futures; monitoring Arctic change; funding strategic, regional adaptation; and, deep decarbonization through transformation of the energy system coupled with negative carbon emissions. We are now in the decisive decade concerning the future we leave behind for the next generations. The Arctic’s future depends on global action, and in turn, the Arctic plays a critical role in the global future.
  2. Abstract

    Sea ice will persist longer in the Last Ice Area (LIA), north of Canada and Greenland, than elsewhere in the Arctic. We combine earth system model ensembles with a sea‐ice tracking utility (SITU) to explore sources of sea ice (the “ice shed”) to the LIA under two scenarios: continued high warming (HW) rates and low warming (LW) rates (mean global warming below ca. 2°C) through the 21st century. Until mid‐century, the two scenarios yield similar results: the primary ice source shifts from the Russian continental shelves to the central Arctic, mobility increases, and mean ice age in the LIA drops from about 7 years to less than one. After about 2050, sea ice stabilizes in the LW scenario, but continues to decline in the HW scenario until LIA sea ice is nearly entirely seasonal and locally formed. Sea ice pathways through the ice shed determine LIA ice conditions and transport of material, including biota, sediments, and pollutants (spilled oil and industrial or agricultural contaminants have been identified as potential hazards). This study demonstrates that global warming has a dramatic impact on the sources, pathways and ages of ice entering the LIA. Therefore, we suggest that maintaining ice quality and preservingmore »ice‐obligate ecologies in the LIA, including the Tuvaijuittuq Marine Protected Area north of Nunavut, Canada, will require international governance. The SITU system used in this study is publicly available as an online utility to support researchers, policy analysts, and educators interested in past and future sea ice sources and trajectories.

    « less