skip to main content


Search for: All records

Creators/Authors contains: "Pham, Vu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kim, Jaehwan (Ed.)
    Electrical impedance tomography (EIT) is a rising and emerging imaging technique with great potential in many areas, especially in functional brain imaging applications. An EIT system with high speed and accuracy can have many applications to medical devices supporting in diagnosis and treatment of neurological disorders and diseases. In this research, EIT algorithms and hardware are developed and improved to increase reconstructed images' accuracy and decrease the reconstruction time. Due to multiplexer design limitations, EIT measurements are subject to strong capacitive effects from charging and discharging in switching cycles around 300 to 400 samples per 1280 samples (in 10 milliseconds sampling). We developed an algorithm to choose data in steady-state condition only selectively. This method improves the signal-to-noise ratio and results in better reconstruction images. An algorithm to effectively synchronize the beginning points of data was developed to increase the system's speed. This presentation also presents the EIT system's hardware architecture based on Texas Instruments Fixed-Point Digital Signal Processor - TMS320VC5509A, which is low-cost, high potential in popularity the community in the future. For high operation speed, we propose the EIT system used Sitaraâ„¢ AM57x processors of Texas Instruments. 
    more » « less
  2. Kim, Jaehwan (Ed.)
    Measuring and analyzing local field potential (LFP) signals from basolateral amygdala (BLA), hippocampus (HPC) and medial prefrontal cortex (mPFC) may help understand how they communicate with each other during fear memory formation and extinction. In our research, we have formulated a computationally simple and noise immune instantaneous amplitude cross correlation technique which can deduce lead and lag of LFPs generated in BLA, HPC, and mPFC and the directionality of brain signals exchanged between regions. LFP signals are recorded using depth electrodes in the rat brain and cross correlation analysis is applied to theta wave signals after filtering. We found that rats resilient to traumatic conditions (based on post-stress rapid eye movement sleep (REM)) showed a decrease in LFP signal correlation in REM and non-REM (NREM) sleep cycles between BLA-HPC regions after shock training and one day post shock training compared to vulnerable rats that show stress-induced reductions in REM. It is presumed this difference in neural network behavior may be related to REM sleep differences between resilient and vulnerable rats and may provide clues to help understand how traumatic conditions are processed by the brain. 
    more » « less