skip to main content


Title: Signal processing to improve the speed and accuracy of electrical impedance tomography imaging
Electrical impedance tomography (EIT) is a rising and emerging imaging technique with great potential in many areas, especially in functional brain imaging applications. An EIT system with high speed and accuracy can have many applications to medical devices supporting in diagnosis and treatment of neurological disorders and diseases. In this research, EIT algorithms and hardware are developed and improved to increase reconstructed images' accuracy and decrease the reconstruction time. Due to multiplexer design limitations, EIT measurements are subject to strong capacitive effects from charging and discharging in switching cycles around 300 to 400 samples per 1280 samples (in 10 milliseconds sampling). We developed an algorithm to choose data in steady-state condition only selectively. This method improves the signal-to-noise ratio and results in better reconstruction images. An algorithm to effectively synchronize the beginning points of data was developed to increase the system's speed. This presentation also presents the EIT system's hardware architecture based on Texas Instruments Fixed-Point Digital Signal Processor - TMS320VC5509A, which is low-cost, high potential in popularity the community in the future. For high operation speed, we propose the EIT system used Sitara™ AM57x processors of Texas Instruments.  more » « less
Award ID(s):
1827847
PAR ID:
10550297
Author(s) / Creator(s):
; ; ;
Editor(s):
Kim, Jaehwan
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510640092
Page Range / eLocation ID:
36
Format(s):
Medium: X
Location:
Online Only, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Kim, Jaehwan ; Oh, Ilkwon ; Yoon, Hargsoon ; Porfiri, Maurizio (Ed.)
    Electrical Impedance Tomography (EIT) is a medical imaging technique that reconstructs impedance distribution inside a target object by injecting electrical currents into pairs of electrodes and measuring induced voltages on the remaining electrodes. Since neural signals result from the activity of ion channels causing impedance changes in the cell membrane, EIT can image these neural activities for understanding brain function and medical purposes. In our research, our self-developed electronic prototype board was used to generate high-quality electrical current and collect the data on electrodes with a high sampling rate and bit-resolution. In image reconstruction, a preprocessing data analysis algorithm was newly developed and applied to improve the accuracy of our EIT imaging. The human head has complex anatomical geometry and non-uniform resistivity distribution along with the highly resistive skull, which makes brain-EIT remains challenging inaccurate image reconstruction. To mimic the human head, a multi-layered human head phantom was designed and tested to investigate the effect of the skull structure on imaging. In this presentation, comparison studies for measurements and simulation results will be introduced to discuss the source of errors and improve the accuracy and efficiency of our brain-EIT system. 
    more » « less
  2. Electrical Impedance Tomography (EIT) is a well-known imaging technique for detecting the electrical properties of an object in order to detect anomalies, such as conductive or resistive targets. More specifically, EIT has many applications in medical imaging for the detection and location of bodily tumors since it is an affordable and non-invasive method, which aims to recover the internal conductivity of a body using voltage measurements resulting from applying low frequency current at electrodes placed at its surface. Mathematically, the reconstruction of the internal conductivity is a severely ill-posed inverse problem and yields a poor quality image reconstruction. To remedy this difficulty, at least in part, we regularize and solve the nonlinear minimization problem by the aid of a Krylov subspace-type method for the linear sub problem during each iteration. In EIT, a tumor or general anomaly can be modeled as a piecewise constant perturbation of a smooth background, hence, we solve the regularized problem on a subspace of relatively small dimension by the Flexible Golub-Kahan process that provides solutions that have sparse representation. For comparison, we use a well-known modified Gauss–Newton algorithm as a benchmark. Using simulations, we demonstrate the effectiveness of the proposed method. The obtained reconstructions indicate that the Krylov subspace method is better adapted to solve the ill-posed EIT problem and results in higher resolution images and faster convergence compared to reconstructions using the modified Gauss–Newton algorithm. 
    more » « less
  3. Magnetic resonance imaging (MRI) is a highly significant imaging platform for a variety of medical and research applications. However, the low spatiotemporal resolution of conventional MRI limits its applicability toward rapid acquisition of ultrahigh-resolution scans. Current aims at high-resolution MRI focus on increasing the accuracy of tissue delineation, as- sessments of structural integrity, and early identification of malignancies. Unfortunately, high-resolution imaging often leads to decreased signal/noise (SNR) and contrast/noise (CNR) ratios and increased time cost, which are unfeasible in many clinical and academic settings, offsetting any potential benefits. In this study, we apply and assess the efficacy of super-res- olution reconstruction (SRR) through iterative back-projection utilizing through-plane voxel offsets. SRR allows for high-res- olution imaging in condensed time frames. Rat skulls and archerfish samples, typical models in academic settings, were used to demonstrate the impact of SRR on varying sample sizes and applicability for translational and comparative neuroscience. The SNR and CNR increased in samples that did not fully occupy the imaging probe and in instances where the low-resolution data were acquired in three dimensions, while the CNR was found to increase with both 3D and 2D low-resolution data recon- structions when compared with directly acquired high-resolution images. Limitations to the applied SRR algorithm were inves- tigated to determine the maximum ratios between low-resolution inputs and high-resolution reconstructions and the overall cost effectivity of the strategy. Overall, the study revealed that SRR could be used to decrease image acquisition time, in- crease the CNR in nearly all instances, and increase the SNR in small samples. 
    more » « less
  4. Abstract

    Optical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical setup and can be easily integrated with existing swept-source or spectral-domain OCT systems to reduce the amount of raw spectral data to be acquired. To show the efficacy of this framework, we trained and blindly tested a deep neural network using mouse embryo samples imaged by an SS-OCT system. Using 2-fold undersampled spectral data (i.e., 640 spectral points per A-line), the trained neural network can blindly reconstruct 512 A-lines in 0.59 ms using multiple graphics-processing units (GPUs), removing spatial aliasing artifacts due to spectral undersampling, also presenting a very good match to the images of the same samples, reconstructed using the full spectral OCT data (i.e., 1280 spectral points per A-line). We also successfully demonstrate that this framework can be further extended to process 3× undersampled spectral data per A-line, with some performance degradation in the reconstructed image quality compared to 2× spectral undersampling. Furthermore, an A-line-optimized undersampling method is presented by jointly optimizing the spectral sampling locations and the corresponding image reconstruction network, which improved the overall imaging performance using less spectral data points per A-line compared to 2× or 3× spectral undersampling results. This deep learning-enabled image reconstruction approach can be broadly used in various forms of spectral-domain OCT systems, helping to increase their imaging speed without sacrificing image resolution and signal-to-noise ratio.

     
    more » « less
  5. Glow discharge optical emission spectroscopy elemental mapping (GDOES EM), enabled by spectral imaging strategies, is an advantageous technique for direct multi-elemental analysis of solid samples in rapid timeframes. Here, a single-pixel, or point scan, spectral imaging system based on compressed sensing image sampling, is developed and optimized in terms of matrix density, compression factor, sparsifying basis, and reconstruction algorithm for coupling with GDOES EM. It is shown that a 512 matrix density at a compression factor of 30% provides the highest spatial fidelity in terms of the peak signal-to-noise ratio (PSNR) and complex wavelet structural similarity index measure (cw-SSIM) while maintaining fast measurement times. The background equivalent concentration (BEC) of Cu I at 510.5 nm is improved when implementing the discrete wavelet transform (DWT) sparsifying basis and Two-step Iterative Shrinking/Thresholding Algorithm for Linear Inverse Problems (TwIST) reconstruction algorithm. Utilizing these optimum conditions, a GDOES EM of a flexible, etched-copper circuit board was then successfully demonstrated with the compressed sensing single-pixel spectral imaging system (CSSPIS). The newly developed CSSPIS allows taking advantage of the significant cost-efficiency of point-scanning approaches (>10× vs. intensified array detector systems), while overcoming (up to several orders of magnitude) their inherent and substantial throughput limitations. Ultimately, it has the potential to be implemented on readily available commercial GDOES instruments by adapting the collection optics. 
    more » « less