skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Phifer-Rixey, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wittkopp, Patricia (Ed.)
    Abstract The relationship between genotype and phenotype is often mediated by the environment. Moreover, gene-by-environment (GxE) interactions can contribute to variation in phenotypes and fitness. In the last 500 yr, house mice have invaded the Americas. Despite their short residence time, there is evidence of rapid climate adaptation, including shifts in body size and aspects of metabolism with latitude. Previous selection scans have identified candidate genes for metabolic adaptation. However, environmental variation in diet as well as GxE interactions likely impact body mass variation in wild populations. Here, we investigated the role of the environment and GxE interactions in shaping adaptive phenotypic variation. Using new locally adapted inbred strains from North and South America, we evaluated response to a high-fat diet, finding that sex, strain, diet, and the interaction between strain and diet contributed significantly to variation in body size. We also found that the transcriptional response to diet is largely strain-specific, indicating that GxE interactions affecting gene expression are pervasive. Next, we used crosses between strains from contrasting climates to characterize gene expression regulatory divergence on a standard diet and on a high-fat diet. We found that gene regulatory divergence is often condition-specific, particularly for trans-acting changes. Finally, we found evidence for lineage-specific selection on cis-regulatory variation involved in diverse processes, including lipid metabolism. Overlap with scans for selection identified candidate genes for environmental adaptation with diet-specific effects. Together, our results underscore the importance of environmental variation and GxE interactions in shaping adaptive variation in complex traits. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models. 
    more » « less
  3. Developing robust professional networks can help shape the trajectories of early career scientists. Yet, historical inequities in science, technology, engineering, and mathematics (STEM) fields make access to these networks highly variable across academic programmes, and senior academics often have little time for mentoring. Here, we illustrate the success of a virtual Laboratory Meeting Programme (LaMP). In this programme, we matched students (mentees) with a more experienced scientist (mentors) from a research group. The mentees then attended the mentors’ laboratory meetings during the academic year with two laboratory meetings specifically dedicated to the mentee’s professional development. Survey results indicate that mentees expanded their knowledge of the hidden curriculum as well as their professional network, while only requiring a few extra hours of their mentor’s time over eight months. In addition, host laboratories benefitted from mentees sharing new perspectives and knowledge in laboratory meetings. Diversity of the mentees was significantly higher than the mentors, suggesting that the programme increased the participation of traditionally under-represented groups. Finally, we found that providing a stipend was very important to many mentees. We conclude that virtual LaMPs can be an inclusive and cost-effective way to foster trainee development and increase diversity within STEM fields with little additional time commitment. 
    more » « less
  4. As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas. 
    more » « less
  5. Abstract Urban evolutionary ecology is inherently interdisciplinary. Moreover, it is a field with global significance. However, bringing researchers and resources together across fields and countries is challenging. Therefore, an online collaborative research hub, where common methods and best practices are shared among scientists from diverse geographic, ethnic, and career backgrounds would make research focused on urban evolutionary ecology more inclusive. Here, we describe a freely available online research hub for toolkits that facilitate global research in urban evolutionary ecology. We provide rationales and descriptions of toolkits for: (1) decolonizing urban evolutionary ecology; (2) identifying and fostering international collaborative partnerships; (3) common methods and freely‐available datasets for trait mapping across cities; (4) common methods and freely‐available datasets for cross‐city evolutionary ecology experiments; and (5) best practices and freely available resources for public outreach and communication of research findings in urban evolutionary ecology. We outline how the toolkits can be accessed, archived, and modified over time in order to sustain long‐term global research that will advance our understanding of urban evolutionary ecology. 
    more » « less