skip to main content


Title: Individual-based eco-evolutionary models for understanding adaptation in changing seas
As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.  more » « less
Award ID(s):
1764316
NSF-PAR ID:
10335924
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1962
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.

     
    more » « less
  2. null (Ed.)
    The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology—evolutionary rescue models—can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti -transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change. 
    more » « less
  3. Abstract

    Eco‐phylogeographic approaches to comparative population genetic analyses allow for the inclusion of intrinsic influences as drivers of intraspecific genetic structure. This insight into microevolutionary processes, including changes within a species or lineage, provides better mechanistic understanding of species‐specific interactions and enables predictions of evolutionary responses to environmental change. In this study, we used single nucleotide polymorphisms (SNPs) identified from reduced representation sequencing to compare neutral population structure, isolation by distance (IBD), genetic diversity and effective population size (Ne) across three closely related and co‐distributed saltmarsh sparrow species differing along a specialization gradient—Nelson's (Ammospiza nelsoni subvirgata), saltmarsh (A. caudacuta) and seaside sparrows (A. maritima maritima). Using an eco‐phylogeographic lens within a conservation management context, we tested predictions about species' degree of evolutionary history and ecological specialization to tidal marshes, habitat, current distribution and population status on population genetic metrics. Population structure differed among the species consistent with their current distribution and habitat factors, rather than degree of ecological specialization: seaside sparrows were panmictic, saltmarsh sparrows showed hierarchical structure and Nelson's sparrows were differentiated into multiple, genetically distinct populations. Neutral population genetic theory and demographic/evolutionary history predicted patterns of genetic diversity andNerather than degree of ecological specialization. Patterns of population variation and evolutionary distinctiveness (Shapely metric) suggest different conservation measures for long‐term persistence and evolutionary potential in each species. Our findings contribute to a broader understanding of the complex factors influencing genetic variation, beyond specialist‐generalist status and support the role of an eco‐phylogeographic approach in population and conservation genetics.

     
    more » « less
  4. null (Ed.)
    Synopsis Antarctic fishes have evolved under stable, extreme cold temperatures for millions of years. Adapted to thrive in the cold environment, their specialized phenotypes will likely render them particularly susceptible to future ocean warming and acidification as a result of climate change. Moving from a period of stability to one of environmental change, species persistence will depend on maintaining energetic equilibrium, or sustaining the increased energy demand without compromising important biological functions such as growth and reproduction. Metabolic capacity to acclimate, marked by a return to metabolic equilibrium through physiological compensation of routine metabolic rate (RMR), will likely determine which species will be better poised to cope with shifts in environmental conditions. Focusing on the suborder Notothenioidei, a dominant group of Antarctic fishes, and in particular four well-studied species, Trematomus bernacchii, Pagothenia borchgrevinki, Notothenia rossii, and N. coriiceps, we discuss metabolic acclimation potential to warming and CO2-acidification using an integrative and comparative framework. There are species-specific differences in the physiological compensation of RMR during warming and the duration of acclimation time required to achieve compensation; for some species, RMR fully recovered within 3.5 weeks of exposure, such as P. borchgrevinki, while for other species, such as N. coriiceps, RMR remained significantly elevated past 9 weeks of exposure. In all instances, added exposure to increased PCO2, further compromised the ability of species to return RMR to pre-exposure levels. The period of metabolic imbalance, marked by elevated RMR, was underlined by energetic disturbance and elevated energetic costs, which shifted energy away from fitness-related functions, such as growth. In T. bernacchii and N. coriiceps, long duration of elevated RMR impacted condition factor and/or growth rate. Low growth rate can affect development and ultimately the timing of reproduction, severely compromising the species’ survival potential and the biodiversity of the notothenioid lineage. Therefore, the ability to achieve full compensation of RMR, and in a short-time frame, in order to avoid long term consequences of metabolic imbalance, will likely be an important determinant in a species’ capacity to persist in a changing environment. Much work is still required to develop our understanding of the bioenergetics of Antarctic fishes in the face of environmental change, and a targeted approach of nesting a mechanistic focus in an ecological and comparative framework will better aid our predictions on the effect of global climate change on species persistence in the polar regions. 
    more » « less
  5. Abstract

    Understanding spatial patterns of genetic differentiation and local adaptation is critical in a period of rapid environmental change. Climate change and anthropogenic development have led to population declines and shifting geographic distributions in numerous species. The streamside salamander,Ambystoma barbouri, is an endemic amphibian with a small geographic range that predominantly inhabits small, ephemeral streams. AsAbarbouriis listed as near‐threatened by the IUCN, we describe range‐wide patterns of genetic differentiation and adaptation to assess the species’ potential to respond to environmental change. We use outlier scans and genetic‐environment association analyses to identify genomic variation putatively underlying local adaptation across the species’ geographic range. We find evidence for adaptation with a polygenic architecture and a set of candidate SNPs that identify genes putatively contributing to local adaptation. Our results build on earlier work that suggests that someA. barbouripopulations are locally adapted despite evidence for asymmetric gene flow between the range core and periphery. Taken together, the body of work describing the evolutionary genetics of range limits inA. barbourisuggests that the species may be unlikely to respond naturally to environmental challenges through a range shift orin situadaptation. We suggest that management efforts such as assisted migration may be necessary in future.

     
    more » « less