- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Philip, Sajeev (2)
-
Alexander, Becky (1)
-
Baker, David (1)
-
Basu, Sourish (1)
-
Bowman, Kevin (1)
-
Byrne, Brendan (1)
-
Chen, Qianjie (1)
-
Chevallier, Frederic (1)
-
He, Pengzhen (1)
-
He, Wei (1)
-
Jiang, Fei (1)
-
Johnson, Matthew S (1)
-
Kubar, Terence L (1)
-
Li, Xing (1)
-
Liu, Junjie (1)
-
Liu, Zhiqiang (1)
-
Lu, Xiao (1)
-
Martin, Randall V. (1)
-
Miller, Scot M (1)
-
Shah, Viral (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2fluxes constrained by CO2observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2concentration under climate change.more » « less
-
Shao, Jingyuan; Chen, Qianjie; Wang, Yuxuan; Lu, Xiao; He, Pengzhen; Sun, Yele; Shah, Viral; Martin, Randall V.; Philip, Sajeev; Song, Shaojie; et al (, Atmospheric Chemistry and Physics)Abstract. Air quality models have not been able to reproduce the magnitude of theobserved concentrations of fine particulate matter (PM2.5) duringwintertime Chinese haze events. The discrepancy has been at least partlyattributed to low biases in modeled sulfate production rates, due to the lackof heterogeneous sulfate production on aerosolsin the models. In this study, we explicitly implement four heterogeneous sulfate formationmechanisms into a regional chemical transport model, in addition togas-phase and in-cloud sulfate production. We compare the model results withobservations of sulfate concentrations and oxygen isotopes, Δ17O(SO42-), in the winter of 2014–2015, the latter of whichis highly sensitive to the relative importance of different sulfateproduction mechanisms. Model results suggest that heterogeneous sulfateproduction on aerosols accounts for about 20 % of sulfate production inclean and polluted conditions, partially reducing the modeled low bias insulfate concentrations. Model sensitivity studies in comparison with theΔ17O(SO42-) observations suggest that heterogeneoussulfate formation is dominated by transition metal ion-catalyzed oxidation of SO2.more » « less
An official website of the United States government
