Abstract Extreme climate events are becoming more frequent, with poorly understood implications for carbon sequestration by terrestrial ecosystems. A better understanding will critically depend on accurate and precise quantification of ecosystems responses to these events. Taking the 2019 US Midwest floods as a case study, we investigate current capabilities for tracking regional flux anomalies with “top‐down” inversion analyses that assimilate atmospheric CO2observations. For this analysis, we develop a regionally nested version of the NASA Carbon Monitoring System‐Flux system for North America (CMS‐Flux‐NA) that allows high resolution atmospheric transport (0.5° × 0.625°). Relative to a 2018 baseline, we find the 2019 US Midwest growing season net carbon uptake is reduced by 11–57 TgC (3%–16%, range across assimilated CO2data sets). These estimates are found to be consistent with independent “bottom‐up” estimates of carbon uptake based on vegetation remote sensing (15–78 TgC). We then investigate current limitations in tracking regional carbon budgets using “top‐down” methods. In a set of observing system simulation experiments, we show that the ability of atmospheric CO2inversions to capture regional carbon flux anomalies is still limited by observational coverage gaps for both in situ and satellite observations. Future space‐based missions that allow for daily observational coverage across North America would largely mitigate these observational gaps, allowing for improved top‐down estimates of ecosystem responses to extreme climate events.
more »
« less
The reduced net carbon uptake over Northern Hemisphere land causes the close-to-normal CO 2 growth rate in 2021 La Niña
La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2fluxes constrained by CO2observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2concentration under climate change.
more »
« less
- Award ID(s):
- 2017870
- PAR ID:
- 10541249
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 23
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In climate studies, it is crucial to distinguish between changes caused by natural variability and those resulting from external forcing. Here we use a suite of numerical experiments based on the ECCO‐Darwin ocean biogeochemistry model to separate the impact of the atmospheric carbon dioxide (CO2) growth rate and climate on the ocean carbon sink — with a goal of disentangling the space‐time variability of the dominant drivers. When globally integrated, the variable atmospheric growth rate and climate exhibit similar magnitude impacts on ocean carbon uptake. At local scales, interannual variability in air‐sea CO2flux is dominated by climate. The implications of our study for real‐world ocean observing systems are clear: in order to detect future changes in the ocean sink due to slowing atmospheric CO2growth rates, better observing systems and constraints on climate‐driven ocean variability are required.more » « less
-
Abstract Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming—two key environmental‐change drivers in the Arctic—alter CO2fluxes in three tundra habitats varying in soil moisture and plant‐community composition. In a full‐factorial experiment in high‐Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO2uptake to be suppressed by both drivers depending on habitat. CO2uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5‐fold increase in their CO2source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer‐long NEE. Nevertheless, grubbing offset peak summer CO2uptake and warming led to a twofold increase in late summer CO2source strength. In wet habitats, grubbing reduced GEP (−40%) more than ER (−30%), weakening their CO2sink strength by 70%. One‐year CO2‐flux responses were similar to two‐year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO2‐flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO2uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental‐change drivers—goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP—consistently suppress net tundra CO2uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO2fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.more » « less
-
Abstract Water stress regulates land‐atmosphere carbon dioxide (CO2) exchanges in the tropics; however, its role remains poorly characterized due to the confounding roles of radiation, temperature and canopy dynamics. In particular, uncertainty stems from the relative roles of plant‐available water (supply) and atmospheric water vapor deficit (demand) as mechanistic drivers of photosynthetic carbon (C) uptake variability. Using satellite measurements of gravity, CO2and fluorescence to constrain a mechanistic carbon‐water cycle model from 2001 to 2018, we found that the interannual variability (IAV) of water stress on photosynthetic C uptake was 52% greater than the combined effects of other factors. Surprisingly, the dominance of water stress on C uptake IAV was greater in the wet tropics (94%) than in the dry tropics (26%). Plant‐available water supply and atmospheric demand both contributed to the IAV of water stress on photosynthetic C uptake across the tropics, but the IAV of demand effects was 21% greater than the IAV of supply effects (33% greater in the wet tropics and 6% greater in the dry tropics). We found that the IAV of water stress on C uptake was 24% greater than the IAV of the combination of other factors in the net land‐atmosphere C sink in the whole tropics, 26% greater in the wet tropics, and 7% greater in the dry tropics. Given the recent trends in tropical precipitation and atmospheric humidity, our findings indicate that water stress——from both supply and demand——will likely dominate the climate response of land C sink across tropical ecosystems in the coming decades.more » « less
-
null (Ed.)In 2018, central and northern parts of Europe experienced heat and drought conditions over many months from spring to autumn, strongly affecting both natural ecosystems and crops. Besides their impact on nature and society, events like this can be used to study the impact of climate variations on the terrestrial carbon cycle, which is an important determinant of the future climate trajectory. Here, variations in the regional net ecosystem exchange (NEE) of CO 2 between terrestrial ecosystems and the atmosphere were quantified from measurements of atmospheric CO 2 mole fractions. Over Europe, several observational records have been maintained since at least 1999, giving us the opportunity to assess the 2018 anomaly in the context of at least two decades of variations, including the strong climate anomaly in 2003. In addition to an atmospheric inversion with temporally explicitly estimated anomalies, we use an inversion based on empirical statistical relations between anomalies in the local NEE and anomalies in local climate conditions. For our analysis period 1999–2018, we find that higher-than-usual NEE in hot and dry summers may tend to arise in Central Europe from enhanced ecosystem respiration due to the elevated temperatures, and in Southern Europe from reduced photosynthesis due to the reduced water availability. Despite concerns in the literature, the level of agreement between regression-based NEE anomalies and temporally explicitly estimated anomalies indicates that the atmospheric CO 2 measurements from the relatively dense European station network do provide information about the year-to-year variations of Europe’s carbon sources and sinks, at least in summer. This article is part of the theme issue ‘Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale’.more » « less
An official website of the United States government

