skip to main content


Search for: All records

Creators/Authors contains: "Phuttitarn, Linipun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to make high-fidelity qubit measurements with minimal collateral disruption to the system is not only relevant to initialization and final read-out -- it is also essential to achieving quantum error correction on a universal quantum computation. Qubit state measurements in a neutral atom array are achieved by probing the array with light detuned from a cycling transition and capturing resulting fluorescence with a high quantum efficiency imaging device, producing a greyscale image of the neutral atom array. Conventionally, to achieve a fidelity above 99%, the typical probing period is several ms. This is a significant delay, given that the longest gate operation only takes several micros. In this poster, we demonstrate qubit state measurements assisted by a supervised convolutional neural network (CNN) in a neutral atom quantum processor. We present two CNN architectures for analyzing neutral atom qubit readout data: a compact 5-layer single-qubit CNN architecture and a 6-layer multi-qubit CNN architecture. We benchmark both architectures against a conventional Gaussian threshold analysis method. We demonstrate up to 56% reduction of measurement infidelity using the CNN compared to a conventional analysis method. This work presents a proof of concept for a CNN network to be implemented as a real-time readout processing method on a neutral atom quantum computer, enabling faster readout time and improved fidelity. 
    more » « less
    Free, publicly-accessible full text available June 5, 2025
  2. Abstract

    Dielectric mirrors comprising thin‐film multilayers are widely used in optical experiments because they can achieve substantially higher reflectance compared to metal mirrors. Here, potential problems are investigated that can arise when dielectric mirrors are used at oblique incidence, in particular for focused beams. It is found that light beams reflected from dielectric mirrors can experience lateral beam shifts, beam‐shape distortion, and depolarization, and these effects have a strong dependence on wavelength, incident angle, and incident polarization. Because vendors of dielectric mirrors typically do not share the particular layer structure of their products, several dielectric‐mirror stacks are designed and simulated, and then the lateral beam shift from two commercial dielectric mirrors and one coated metal mirror is also measured. This paper brings awareness of the tradeoffs between dielectric mirrors and front‐surface metal mirrors in certain optics experiments, and it is suggested that vendors of dielectric mirrors provide information about beam shifts, distortion, and depolarization when their products are used at oblique incidence.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025