skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pi, Xinyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subteam Replacement: given a team of people em- bedded in a social network to complete a certain task, and a subset of members (i.e., subteam) in this team which have become unavailable, find another set of people who can perform the subteam’s role in the larger team. We conjecture that a good candidate subteam should have high skill and structural similarity with the replaced subteam while sharing a similar connection with the larger team as a whole. Based on this conjecture, we propose a novel graph kernel which evaluates the goodness of candidate subteams in this holistic way freely adjustable to the need of the situation. To tackle the significant computational difficulties, we equip our kernel with a fast approximation algorithm which (a) employs effective pruning strategies, (b) exploits the similarity between candidate team structures to reduce kernel computations, and (c) features a solid theoretical bound on the quality of the obtained solution. We extensively test our solution on both synthetic and real datasets to demonstrate its effectiveness and efficiency. Our proposed graph kernel outputs more human-agreeable recommendations compared to metrics used in previous work, and our algorithm consistently outperforms alternative choices by finding near- optimal solutions while scaling linearly with the size of the replaced subteam. 
    more » « less