- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akras, S. (1)
-
Aliotta, M (1)
-
Boumis, P. (1)
-
Buompane, R (1)
-
Chatzikos, M. (1)
-
Chiotellis, A. (1)
-
Couder, M (1)
-
Couture, A (1)
-
Ferland, G. J. (1)
-
Formicola, A (1)
-
Gialanella, L (1)
-
Glorius, J (1)
-
Imbriani, G (1)
-
Junker, M (1)
-
Langer, C (1)
-
Lennarz, A (1)
-
Litvinov, Yu A (1)
-
Liu, W-P (1)
-
Lugaro, M (1)
-
Matei, C (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Steadily accreting white dwarfs (WDs) are efficient sources of ionization and thus are able to create extended ionized nebulae in their vicinity. These nebulae represent ideal tools for the detection of accreting WDs, given that in most cases the source itself is faint. In this work, we combine radiation transfer simulations with known H- and He-accreting WD models, providing for the first time the ionization state and the emission-line spectra of the formed nebulae as a function of the WD mass, the accretion rate and the chemical composition of the accreted material. We find that the nebular optical line fluxes and radial extent vary strongly with the WD’s accretion properties, peaking in systems with WD masses of 0.8–1.2 $$\rm M_{\odot }$$. Projecting our results on so-called BPT diagnostic diagrams, we show that accreting WD nebulae possess characteristics distinct from those of H ii-like regions, while they have line ratios similar to those in galactic low-ionization emission-line regions. Finally, we compare our results with the relevant constraints imposed by the lack of ionized nebulae in the vicinity of supersoft X-ray sources (SSSs) and Type Ia supernova remnants – sources that are related to steadily accreting WDs. The large discrepancies uncovered by our comparison rule out any steadily accreting WD as a potential progenitor of the studied remnants and additionally require the ambient medium around the SSSs to be less dense than 0.2 $$\rm cm^{-3}$$. We discuss possible alternatives that could bridge the incompatibility between the theoretical expectations and relevant observations.more » « less
-
Aliotta, M; Buompane, R; Couder, M; Couture, A; deBoer, R J; Formicola, A; Gialanella, L; Glorius, J; Imbriani, G; Junker, M; et al (, Journal of Physics G: Nuclear and Particle Physics)Abstract The study of stellar burning began just over 100 years ago. Nonetheless, we do not yet have a detailed picture of the nucleosynthesis within stars and how nucleosynthesis impacts stellar structure and the remnants of stellar evolution. Achieving this understanding will require precise direct measurements of the nuclear reactions involved. This report summarizes the status of direct measurements for stellar burning, focusing on developments of the last couple of decades, and offering a prospectus of near-future developments.more » « less
An official website of the United States government
