- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Fabrizio, Michele (2)
-
Pietrinferni, Adriano (2)
-
Salaris, Maurizio (2)
-
Aboudan, Alessio (1)
-
Abreu, Manuel (1)
-
Acuña, Lorena (1)
-
Adams, Moritz (1)
-
Adibekyan, Vardan (1)
-
Aerts, Conny (1)
-
Affer, Laura (1)
-
Agneray, François (1)
-
Agnor, Craig (1)
-
Aguirre_Børsen-Koch, Victor (1)
-
Ahmed, Saad (1)
-
Aigrain, Suzanne (1)
-
Al-Bahlawan, Ashraf (1)
-
Alcacera_Gil, Ma_de_los Angeles (1)
-
Alei, Eleonora (1)
-
Alencar, Silvia (1)
-
Alexander, Richard (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present accurate and deep multiband ( g , r , i ) photometry of the Local Group dwarf irregular galaxy NGC 6822. The images were collected with wide-field cameras at 2 m/4 m (INT, CTIO, CFHT) and 8 m class telescopes (Subaru) covering a 2 deg 2 field of view across the center of the galaxy. We performed point-spread function photometry of ≈7000 CCD images, and the final catalog includes more than 1 million objects. We developed a new approach to identify candidate field and galaxy stars and performed a new estimate of the galaxy center by using old stellar tracers, finding that it differs by 1.′15 (R.A.) and 1.′53 (decl.) from previous estimates. We also found that young (main sequence, red supergiants), intermediate (red clump, asymptotic giant branch (AGB)), and old (red giant branch) stars display different radial distributions. The old stellar population is spherically distributed and extends to radial distances larger than previously estimated (∼1°). The young population shows a well-defined bar and a disk-like distribution, as suggested by radio measurements, that is off-center compared with the old population. We discuss pros and cons of the different diagnostics adopted to identify AGB stars and develop new ones based on optical–near-IR–mid-IR color–color diagrams to characterize oxygen- and carbon-rich stars. We found a mean population ratio between carbon and M-type (C/M) stars of 0.67 ± 0.08 (optical/near-IR/mid-IR), and we used the observed C/M ratio with empirical C/M–metallicity relations to estimate a mean iron abundance of [Fe/H] ∼ −1.25 ( σ = 0.04 dex), which agrees quite well with literature estimates.more » « less
-
Rauer, Heike; Aerts, Conny; Cabrera, Juan; Deleuil, Magali; Erikson, Anders; Gizon, Laurent; Goupil, Mariejo; Heras, Ana; Walloschek, Thomas; Lorenzo-Alvarez, Jose; et al (, Experimental Astronomy)Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.more » « lessFree, publicly-accessible full text available June 1, 2026
An official website of the United States government
