skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: The PLATO mission
Abstract PLATO (PLAnetary Transits and Oscillations of stars) is ESA’s M3 mission designed to detect and characterise extrasolar planets and perform asteroseismic monitoring of a large number of stars. PLATO will detect small planets (down to <2R$$_\textrm{Earth}$$ Earth ) around bright stars (<11 mag), including terrestrial planets in the habitable zone of solar-like stars. With the complement of radial velocity observations from the ground, planets will be characterised for their radius, mass, and age with high accuracy (5%, 10%, 10% for an Earth-Sun combination respectively). PLATO will provide us with a large-scale catalogue of well-characterised small planets up to intermediate orbital periods, relevant for a meaningful comparison to planet formation theories and to better understand planet evolution. It will make possible comparative exoplanetology to place our Solar System planets in a broader context. In parallel, PLATO will study (host) stars using asteroseismology, allowing us to determine the stellar properties with high accuracy, substantially enhancing our knowledge of stellar structure and evolution. The payload instrument consists of 26 cameras with 12cm aperture each. For at least four years, the mission will perform high-precision photometric measurements. Here we review the science objectives, present PLATO‘s target samples and fields, provide an overview of expected core science performance as well as a description of the instrument and the mission profile towards the end of the serial production of the flight cameras. PLATO is scheduled for a launch date end 2026. This overview therefore provides a summary of the mission to the community in preparation of the upcoming operational phases.  more » « less
Award ID(s):
2205026
PAR ID:
10625201
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Springer
Date Published:
Journal Name:
Experimental Astronomy
Volume:
59
Issue:
3
ISSN:
0922-6435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V at the LHC, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 . Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the$$\text {t}^{*} \rightarrow {\text {t}} {\text {g}} $$ t tg decay channel. The upper limits range from 120 to 0.8$$\,\text {fb}$$ fb for a$$\text {t}^{*} $$ t with spin-1/2 and from 15 to 1.0$$\,\text {fb}$$ fb for a$$\text {t}^{*} $$ t with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700$$\,\text {Ge}\hspace{-.08em}\text {V}$$ Ge V for spin-1/2 and spin-3/2$$\text {t}^{*} $$ t particles, respectively. These are the most stringent limits to date on the existence of$$\text {t}^{*} \rightarrow {\text {t}} {\text {g}} $$ t tg resonances. 
    more » « less
  2. Abstract This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in thes-channel. The data sample considered consists ofppcollisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of$$\sqrt{s} = 13\,\textrm{TeV}$$ s = 13 TeV and recorded by the ATLAS detector, corresponding to up to 140 fb$$^{-1}$$ - 1 . The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum. 
    more » « less
  3. Abstract The evolutionary path of massive stars begins at helium burning. Energy production for this phase of stellar evolution is dominated by the reaction path 3$$\alpha \rightarrow ^{12}$$ α 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O and also determines the ratio of$$^{12}$$ 12 C/$$^{16}$$ 16 O in the stellar core. This ratio then sets the evolutionary trajectory as the star evolves towards a white dwarf, neutron star or black hole. Although the reaction rate of the 3$$\alpha $$ α process is relatively well known, since it proceeds mainly through a single narrow resonance in$$^{12}$$ 12 C, that of the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction remains uncertain since it is the result of a more difficult to pin down, slowly-varying, portion of the cross section over a strong interference region between the high-energy tails of subthreshold resonances, the low-energy tails of higher-energy broad resonances and direct capture. Experimental measurements of this cross section require herculean efforts, since even at higher energies the cross section remains small and large background sources are often present that require the use of very sensitive experimental methods. Since the$$^{12}$$ 12 C$$(\alpha ,\gamma )^{16}$$ ( α , γ ) 16 O reaction has such a strong influence on many different stellar objects, it is also interesting to try to back calculate the required rate needed to match astrophysical observations. This has become increasingly tempting, as the accuracy and precision of observational data has been steadily improving. Yet, the pitfall to this approach lies in the intermediary steps of modeling, where other uncertainties needed to model a star’s internal behavior remain highly uncertain. 
    more » « less
  4. Abstract A search is reported for charge-parity$$CP$$ CP violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ s = 13 Te V recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ fb - 1 , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ D + D 0 π + and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D - D ¯ 0 π - . The$$CP$$ CP asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ D 0 K S 0 K S 0 is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ A CP ( K S 0 K S 0 ) = ( 6.2 ± 3.0 ± 0.2 ± 0.8 ) % , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ CP asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ D 0 K S 0 π + π - decay. This is the first$$CP$$ CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state. 
    more » « less
  5. Abstract Lifetimes of higher-lying states ($$2_2^+$$ 2 2 + and$$4_1^+$$ 4 1 + ) in$$^{16}$$ 16 C have been measured, employing the Gammasphere and Microball detector arrays, as key observables to test and refine ab initio calculations based on interactions developed within chiral Effective Field Theory. The presented experimental constraints to these lifetimes of$$\tau ({2_2^+}) = [\,244, 446]\,~\textrm{fs}$$ τ ( 2 2 + ) = [ 244 , 446 ] fs and$$\tau ({4_1^+}) = [\,1.8, 4]\,~\textrm{ps}$$ τ ( 4 1 + ) = [ 1.8 , 4 ] ps , combined with previous results on the lifetime of the$$2_1^+$$ 2 1 + state of$$^{16}$$ 16 C, provide a rather complete set of key observables to benchmark the theoretical developments. We present No-Core Shell-Model calculations using state-of-the-art chiral 2- (NN) and 3-nucleon (3N) interactions at next-to-next-to-next-to-leading order for both the NN and the 3N contributions and a generalized natural-orbital basis (instead of the conventional harmonic-oscillator single-particle basis) which reproduce, for the first time, the experimental findings remarkably well. The level of agreement of the new calculations as compared to the CD-Bonn meson-exchange NN interaction is notable and presents a critical benchmark for theory. 
    more » « less