skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pillai, Thushara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the highest-resolution (~0.04") Atacama Large Millimeter/submillimeter Array 1.3 mm continuum observations so far of three massive star-forming clumps in the Central Molecular Zone (CMZ), namely 20 km/s C1, 20 km/sC4, and Sgr C C4, which reveal prevalent compact millimeter emission. We extract the compact emission with astrodendro and identify a total of 199 fragments with a typical size of ∼370 au, which represent the first sample of candidates of protostellar envelopes and disks and kernels of prestellar cores in these clumps that are likely forming star clusters. Compared with the protoclusters in the Galactic disk, the three protoclusters display a higher level of hierarchical clustering, likely a result of the stronger turbulence in the CMZ clumps. Compared with the mini-starbursts in the CMZ, Sgr B2 M and N, the three protoclusters also show stronger subclustering in conjunction with a lack of massive fragments. The efficiency of high-mass star formation of the three protoclusters is on average 1 order of magnitude lower than that of Sgr B2 M and N, despite a similar overall efficiency of converting gas into stars. The lower efficiency of high-mass star formation in the three protoclusters is likely attributed to hierarchical cluster formation. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026
  2. The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5–4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5σlevel. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. In this Letter we report Very Long Baseline Array observations of 22 GHz water masers toward the protostar CARMA–6 , located at the center of the Serpens South young cluster. From the astrometric fits to maser spots, we derive a distance of 440.7±3.5 pc for the protostar (1% error). This represents the best direct distance determination obtained so far for an object this young and deeply embedded in this highly obscured region. Taking depth effects into account, we obtain a distance to the cluster of 440.7 ± 4.6 pc. Stars visible in the optical that have astrometric solutions in the Gaia Data Release 3 are, on the other hand, all located at the periphery of the cluster. Their mean distance of 437 −41 +51 pc is consistent within 1 σ with the value derived from maser astrometry. As the maser source is at the center of Serpens South, we finally solve the ambiguity of the distance to this region that has prevailed over the years. 
    more » « less
  4. Abstract G10.21-0.31 is a 70 μ m dark high-mass starless core ( M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙ , characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H 2 CO), and deuteration (N 2 D + /N 2 H + ). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time. 
    more » « less
  5. Abstract We report high-resolution ALMA observations toward a massive protostellar core C1-Sa (∼30 M ⊙ ) in the Dragon infrared dark cloud. At the resolution of 140 au, the core fragments into two kernels (C1-Sa1 and C1-Sa2) with a projected separation of ∼1400 au along the elongation of C1-Sa, consistent with a Jeans length scale of ∼1100 au. Radiative transfer modeling using RADEX indicates that the protostellar kernel C1-Sa1 has a temperature of ∼75 K and a mass of 0.55 M ⊙ . C1-Sa1 also likely drives two bipolar outflows, one being parallel to the plane of the sky. C1-Sa2 is not detected in line emission and does not show any outflow activity but exhibits ortho-H 2 D + and N 2 D + emission in its vicinity; thus it is likely still starless. Assuming a 20 K temperature, C1-Sa2 has a mass of 1.6 M ⊙ . At a higher resolution of 96 au, C1-Sa1 begins to show an irregular shape at the periphery, but no clear sign of multiple objects or disks. We suspect that C1-Sa1 hosts a tight binary with inclined disks and outflows. Currently, one member of the binary is actively accreting while the accretion in the other is significantly reduced. C1-Sa2 shows hints of fragmentation into two subkernels with similar masses, which requires further confirmation with higher sensitivity. 
    more » « less
  6. Abstract In this work, we constrain the star-forming properties of all possible sites of incipient high-mass star formation in the Milky Way’s Galactic Center. We identify dense structures using the CMZoom 1.3 mm dust continuum catalog of objects with typical radii of ∼0.1 pc, and measure their association with tracers of high-mass star formation. We incorporate compact emission at 8, 21, 24, 25, and 70μm from the Midcourse Space Experiment, Spitzer, Herschel, and SOFIA, cataloged young stellar objects, and water and methanol masers to characterize each source. We find an incipient star formation rate (SFR) for the Central Molecular Zone (CMZ) of ∼0.08Myr−1over the next few 105yr. We calculate upper and lower limits on the CMZ’s incipient SFR of ∼0.45 and ∼0.05Myr−1,respectively, spanning roughly equal to and several times greater than other estimates of CMZ’s recent SFR. Despite substantial uncertainties, our results suggest the incipient SFR in the CMZ may be higher than previously estimated. We find that the prevalence of star formation tracers does not correlate with source volume density, but instead ≳75% of high-mass star formation is found in regions above a column density ratio (NSMA/NHerschel) of ∼1.5. Finally, we highlight the detection ofatoll sources, a reoccurring morphology of cold dust encircling evolved infrared sources, possibly representing Hiiregions in the process of destroying their envelopes. 
    more » « less
  7. Context.Traditionally, supersonic turbulence is considered to be one of the most likely mechanisms slowing the gravitational collapse in dense clumps, thereby enabling the formation of massive stars. However, several recent studies have raised differing points of view based on observations carried out with sufficiently high spatial and spectral resolution. These studies call for a re-evaluation of the role turbulence plays in massive star-forming regions. Aims.Our aim is to study the gas properties, especially the turbulence, in a sample of massive star-forming regions with sufficient spatial and spectral resolution, which can both resolve the core fragmentation and the thermal line width. Methods.We observed NH3metastable lines with the Very Large Array (VLA) to assess the intrinsic turbulence. Results.Analysis of the turbulence distribution histogram for 32 identified NH3cores reveals the presence of three distinct components. Furthermore, our results suggest that (1) sub- and transonic turbulence is a prevalent (21 of 32) feature of massive star-forming regions and those cold regions are at early evolutionary stage. This investigation indicates that turbulence alone is insufficient to provide the necessary internal pressure required for massive star formation, necessitating further exploration of alternative candidates; and (2) studies of seven multi-core systems indicate that the cores within each system mainly share similar gas properties and masses. However, two of the systems are characterized by the presence of exceptionally cold and dense cores that are situated at the spatial center of each system. Our findings support the hub-filament model as an explanation for this observed distribution. 
    more » « less
  8. We present Atacama Large Millimeter/submillimeter Array Band 6 (1.3 mm) observations of dense cores in three massive molecular clouds within the central molecular zone (CMZ) of the Milky Way, including the Dust Ridge cloud e, Sgr C, and the 20 km s−1cloud, at a spatial resolution of 2000 au. Among the 834 cores identified from the 1.3 mm continuum, we constrain temperatures and linewidths of 253 cores using local thermodynamic equilibrium methods to fit the H2CO and/or CH3CN spectra. We determine their masses using the 1.3 mm dust continuum and derived temperatures, and then evaluate their virial parameters using the H2CO and/or CH3CN linewidths and construct the core mass functions (CMFs). We find that the contribution of external pressure is crucial for the virial equilibrium of the dense cores in the three clouds, which contrasts with the environment in the Galactic disk where dense cores are already bound, even without the contribution of external pressure. With our new temperature estimates we also find that the CMFs show a Salpeter-like slope in the high-mass (≳3–6M) end, a change from previous works. Combined with the possible top-heavy initial mass functions (IMFs) in the CMZ, our result suggests that gas accretion and further fragmentation may play important roles in transforming the CMF to the IMF. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  9. The Haystack Telescope is an antenna with a diameter of 37 m and an elevation-dependent surface accuracy of ≤100μm that is capable of millimeter-wave observations. The radome-enclosed instrument serves as a radar sensor for space situational awareness, with about one-third of the time available for research by MIT Haystack Observatory. Ongoing testing with the K-band (18–26 GHz) and W-band receivers (currently 85–93 GHz) is preparing the inclusion of the telescope into the Event Horizon Telescope (EHT) array and the use as a single-dish research telescope. Given its geographic location, the addition of the Haystack Telescope to current and future versions of the EHT array would substantially improve the image quality. 
    more » « less
  10. Context. The 1°.3 (G1.3) and 1°.6 (G1.6) cloud complexes in the central molecular zone (CMZ) of our Galaxy have been proposed to possibly reside at the intersection region of the X1 and X2 orbits for several reasons. This includes the detection of co-spatial low- and high-velocity clouds, high velocity dispersion, high fractional molecular abundances of shock-tracing molecules, and kinetic temperatures that are higher than for usual CMZ clouds. Aims. By investigating the morphology and deriving physical properties as well as chemical composition, we want to find the origin of the turbulent gas and, in particular, whether evidence of an interaction between clouds can be identified. Methods. We mapped both cloud complexes in molecular lines in the frequency range from 85 to 117 GHz with the IRAM 30 m telescope. The APEX 12m telescope was used to observe higher frequency transitions between 210 and 475 GHz from selected molecules that are emitted from higher energy levels. We performed non-local thermodynamic equilibrium (non-LTE) modelling of the emission of an ensemble of CH 3 CN lines to derive kinetic temperatures and H 2 volume densities. These were used as starting points for non-LTE modelling of other molecules, for which column densities and abundances were determined and compared with values found for other sources in the CMZ. Results. The kinematic structure of G1.3 reveals an ‘emission bridge’ at intermediate velocities (~150 km s −1 ) connecting low-velocity (~100 km s −1 ) and high-velocity (~180 km s −1 ) gas and an overall fluffy shell-like structure. These may represent observational evidence of cloud-cloud interactions. Low- and high-velocity gas components in G1.6 do not show this type of evidence of an interaction, suggesting that they are spatially separated. We selected three positions in each cloud complex for further analysis. Each position reveals several gas components at various peak velocities and of various line widths. We derived kinetic temperatures of 60–100 K and H 2 volume densities of 10 4 –10 5 cm −3 in both complexes. Molecular abundances relative to H 2 suggest a similar chemistry of the two clouds, which is moreover similar to that of other GC clouds and, especially, agrees well with that of G+0.693 and G−0.11. Conclusions. We conclude that G1.3 may indeed exhibit signs of cloud-cloud interactions. In particular, we propose an interaction of gas that is accreted from the near-side dust lane to the CMZ, with gas pre-existing at this location. Low- and high-velocity components in G1.6 are rather coincidentally observed along the same line of sight. They may be associated with either overshot decelerated gas from the far-side dust line or actual CMZ gas and high-velocity gas moving on a dust lane. These scenarios would be in agreement with numerical simulations. 
    more » « less