skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Plummer, Michael_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Planetary-mass objects and brown dwarfs at the transition (Teff∼ 1300 K) from relatively red L dwarfs to bluer mid-T dwarfs show enhanced spectrophotometric variability. Multiepoch observations support atmospheric planetary-scale (Kelvin or Rossby) waves as the primary source of this variability; however, large spots associated with the precipitation of silicate and metal clouds have also been theorized and suggested by Doppler imaging. We applied both wave and spotted models to fit near-infrared (NIR), multiband (Y/J/H/K) photometry of SIMP J013656.5+093347 (hereafter SIMP0136) collected at the Canada–France–Hawaii Telescope using the Wide-field InfraRed Camera. SIMP0136 is a planetary-mass object (12.7 ± 1.0MJ) at the L/T transition (T2 ± 0.5) known to exhibit light-curve evolution over multiple rotational periods. We measure the maximum peak-to-peak variability of 6.17% ± 0.46%, 6.45% ± 0.33%, 6.51% ± 0.42%, and 4.33% ± 0.38% in theY,J,H, andKbands, respectively, and find evidence that wave models are preferred for all four NIR bands. Furthermore, we determine that the spot size necessary to reproduce the observed variations is larger than the Rossby deformation radius and Rhines scale, which is unphysical. Through the correlation between light curves produced by the waves and associated color variability, we find evidence of planetary-scale, wave-induced cloud modulation and breakup, similar to Jupiter’s atmosphere and supported by general circulation models. We also detect a 93.°8 ± 7.°4 (12.7σ) phase shift between theH−KandJ−Hcolor time series, providing evidence for complex vertical cloud structure in SIMP0136's atmosphere. 
    more » « less