Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (
Planetary-mass objects and brown dwarfs at the transition (
- PAR ID:
- 10524295
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 970
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 62
- Size(s):
- Article No. 62
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract d ≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJ band, no standard matches well across the fullYJHK wavelength range. The CWISE J105512.11+544328.3 NH3-H = 0.427 ± 0.0012 and CH4-J = 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g ) ≤ 4.5 andT eff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μ m color. -
Abstract Multiwavelength photometry of brown dwarfs and planetary-mass objects provides insight into their atmospheres and cloud layers. We present near-simultaneous
J - andK s -band multiwavelength observations of the highly variable T2.5 planetary-mass object, SIMP J013656.5+093347. We reanalyze observations acquired over a single night in 2015 using a recently developed data reduction pipeline. For the first time, we detect a phase shift betweenJ - andK s -band light curves, which we measure to be . Previously, phase shifts between near-infrared and mid-infrared observations of this object were detected and attributed to probing different depths of the atmosphere, and thus different cloud layers. Using the Sonora Bobcat models, we expand on this idea to show that at least two different patchy cloud layers must be present to explain the measured phase shift. Our results are generally consistent with recent atmospheric retrievals of this object and other similar L/T transition objects. -
Abstract Constraining L dwarf properties from their spectra is challenging. Near-infrared (NIR) spectra probe a limited range of pressures, while many species condense within their photospheres. Condensation creates two complexities: gas-phase species “rain out” (decreasing in abundances by many orders of magnitude) and clouds form. We designed tests using synthetic data to determine the best approach for retrieving L dwarf spectra, isolating the challenges in the absence of cloud opacity. We conducted atmospheric retrievals on synthetic cloud-free L dwarf spectra derived from the Sonora Bobcat models at SpeX resolution using a variety of thermal and chemical abundance profile parameterizations. For objects hotter than L5 (
T eff∼ 1700 K), the limited pressure layers probed in the NIR are mostly convective; parameterized pressure–temperature (PT ) profiles bias results and free, unsmoothed profiles should be used. Only when many layers both above and below the radiative-convective boundary are probed can parameterized profiles provide accurate results. Furthermore, a nonuniform abundance profile for FeH is needed to accurately retrieve bulk properties of early-to-mid L dwarfs. Nonuniform prescriptions for other gases in NIR retrievals may also be warranted near the L/T transition (CH4) and early Y dwarfs (Na and K). We demonstrate the utility of using realistic, self-consistent models to benchmark retrievals and suggest how they can be used in the future. -
ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared.more » « less
-
Abstract Mapping out the populations of thick disk and halo brown dwarfs is important for understanding the metallicity dependence of low-temperature atmospheres and the substellar mass function. Recently, a new population of cold and metal-poor brown dwarfs has been discovered, with
T eff≲ 1400 K and metallicity ≲−1 dex. This population includes what may be the first known “extreme T-type subdwarfs” and possibly the first Y-type subdwarf, WISEA J153429.75−104303.3. We have conducted a GeminiYJHK /Ks photometric follow-up campaign targeting potentially metal-poor T and Y dwarfs, utilizing the GNIRS and Flamingos-2 instruments. We present 14 near-infrared photometric detections of eight unique targets: six T subdwarf candidates, one moderately metal-poor Y dwarf candidate, and one Y subdwarf candidate. We have obtained the first-ever ground-based detection of the highly anomalous object WISEA J153429.75−104303.3. The F110W −J color of WISEA J153429.75−104303.3 is significantly bluer than that of other late T and Y dwarfs, indicating that WISEA J153429.75−104303.3 has an unusual spectrum in the 0.9–1.4μ m wavelength range which encompasses theJ -band peak. OurJ -band detection of WISEA J153429.75−104303.3 and corresponding model comparisons suggest a subsolar metallicity and temperature of 400–550 K for this object. JWST spectroscopic follow-up at near-infrared and mid-infrared wavelengths would allow us to better understand the spectral peculiarities of WISEA J153429.75−104303.3, assess its physical properties, and conclusively determine whether or not it is the first Y-type subdwarf.