- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pollock, S. (2)
-
Scott, L. R. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider extrapolation of the Arnoldi algorithm to accelerate computation of the dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov vectors to form a small eigenproblem which is solved exactly. The two dominant eigenvectors output from consecutive Arnoldi steps are then recombined to form an extrapolated iterate, and this accelerated iterate is used to restart the next Arnoldi process. We present numerical results testing the algorithm on a variety of cases and find on most examples it substantially improves the performance of restarted Arnoldi. The extrapolation is a simple post-processing step which has minimal computational cost.more » « less
-
Pollock, S.; Scott, L. R. (, International journal of numerical analysis and modeling)We consider extrapolation of the Arnoldi algorithm to accelerate computation of the dominant eigenvalue/eigenvector pair. The basic algorithm uses sequences of Krylov vectors to form a small eigenproblem which is solved exactly. The two dominant eigenvectors output from consecutive Arnoldi steps are then recombined to form an extrapolated iterate, and this accelerated iterate is used to restart the next Arnoldi process. We present numerical results testing the algorithm on a variety of cases and find on most examples it substantially improves the performance of restarted Arnoldi. The extrapolation is a simple post-processing step which has minimal computational cost.more » « less
An official website of the United States government

Full Text Available