ACIGS solar cells are exposed to targeted radiation to probe the front and back interfaces of the absorber to assess the impact of space environments on these systems. These data suggest ACIGS cells are more radiation‐hard than early CIGS devices likely due to the lower defect densities and more ideal interfaces in the ACIGS system. A combination of
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Poplavskyy, Dmitry (2)
-
Afshari, Hadi (1)
-
Bailey, Jeff (1)
-
Bertoni, Mariana I. (1)
-
Byers, Todd A (1)
-
Chacon, Sergio A (1)
-
Durant, Brandon K (1)
-
Farshchi, Rouin (1)
-
Khanal, Megh N (1)
-
Lai, Barry (1)
-
Maser, Jörg M. (1)
-
Nietzold, Tara (1)
-
Parashar, Mritunjaya (1)
-
Rout, Bibhudutta (1)
-
Sellers, Ian R (1)
-
Stuckelberger, Michael E. (1)
-
West, Bradley (1)
-
Whiteside, Vincent R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
J –V and external quantum efficiency measurements indicates some improvement in the performance of the device due to the effects of local heating in the dominant ionizing electronic energy loss regime of proton irradiation that anneal the upper CdS/ACIGS interface. However, nonionizing energy losses at the base of the solar cell also appear to inhibit minority carrier collection from the back of the cell at the ACIGS/Mo interface, which is discussed in terms of defect‐mediated changes in the doping profile, the Ga/Ga+In ratio, and impurity composition after proton irradiation. -
Stuckelberger, Michael E. ; Nietzold, Tara ; West, Bradley ; Farshchi, Rouin ; Poplavskyy, Dmitry ; Bailey, Jeff ; Lai, Barry ; Maser, Jörg M. ; Bertoni, Mariana I. ( , Journal of Physics: Energy)
Abstract The efficiency of thin-film solar cells with a Cu(
Gax )Se2absorber is limited by nanoscopic inhomogeneities and defects. Traditional characterization methods are challenged by the multi-scale evaluation of the performance at defects that are buried in the device structures. Multi-modal x-ray microscopy offers a unique tool-set to probe the performance in fully assembled solar cells, and to correlate the performance with composition down to the micro- and nanoscale. We applied this approach to the mapping of temperature-dependent recombination for Cu( Gax )Se2solar cells with different absorber grain sizes, evaluating the same areas from room temperature to . It was found that poor performing areas in the large-grain sample are correlated with a Cu-deficient phase, whereas defects in the small-grain sample are not correlated with the distribution of Cu. In both samples, classes of recombination sites were identified, where defects were activated or annihilated by temperature. More generally, the methodology of combinedoperando andin situ x-ray microscopy was established at the physical limit of spatial resolution given by the device itself. As proof-of-principle, the measurement of nanoscopic current generation in a solar cell is demonstrated with applied bias voltage and bias light.