Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Novel end-user programming (EUP) tools enable on-the-fly (i.e., spontaneous, easy, and rapid) creation of interactions with robotic systems. These tools are expected to empower users in determining system behavior, although very little is understood about how end users perceive, experience, and use these systems. In this paper, we seek to address this gap by investigating end-user experience with on-the-fly robot EUP. We trained 21 end users to use an existing on-the-fly EUP tool, asked them to create robot interactions for four scenarios, and assessed their overall experience. Our findings provide insight into how these systems should be designed to better support end-user experience with on-the-fly EUP, focusing on user interaction with an automatic program synthesizer that resolves imprecise user input, the use of multimodal inputs to express user intent, and the general process of programming a robot.more » « lessFree, publicly-accessible full text available July 1, 2025
-
End-user development (EUD) represents a key step towards making robotics accessible for experts and non-experts alike. Within academia, researchers investigate novel ways that EUD tools can capture, represent, visualize, analyze, and test developer intent. At the same time, industry researchers increasingly build and ship programming tools that enable customers to interact with their robots. However, despite this growing interest, the role of EUD within HRI is not well defined. EUD struggles to situate itself within a growing array of alternative approaches to application development, such as robot learning and teleoperation. EUD further struggles due to the wide range of individuals who can be considered end users, such as independent third-party application developers, consumers, hobbyists, or even employees of the robot manufacturer. Key questions remain such as how EUD is justified over alternate approaches to application development, which contexts EUD is most suited for, who the target users of an EUD system are, and where interaction between a human and a robot takes place, amongst many other questions. We seek to address these challenges and questions by organizing the frst End-User Development for Human-Robot Interaction (EUD4HRI) workshop at the 2024 International Conference of Human-Robot Interaction. The workshop will bring together researchers with a wide range of expertise across academia and industry, spanning perspectives from multiple subfields of robotics, with the primary goal being a consensus of perspectives about the role that EUD must play within human-robot interaction.more » « less
-
As service robots become more capable of autonomous behaviors, it becomes increasingly important to consider how people will be able to communicate with a robot about what task it should perform and how to do the task. There has been a rise in attention to end-user development (EUD), where researchers create interfaces that enable non-roboticist end users to script tasks for autonomous robots to perform. Currently, state-of-the-art interfaces are largely constrained, often through simplified domains or restrictive end-user interaction. Motivated by our past qualitative design work exploring how to integrate a care robot in an assisted living community, we discuss challenges of EUD in this complex domain. One set of challenges stems from different user-facing representations, e.g., certain tasks may lend themselves better to a rule-based trigger-action representations, whereas other tasks may be easier to specify via a sequence of actions. The other stems from considering the needs of multiple stakeholders, e.g., caregivers and residents of the facility may all create tasks for the robot, but the robot may not be able to share information about all tasks with all residents due to privacy concerns. We present scenarios that illustrate these challenges and also discuss possible solutions.more » « less
-
We argue for the use of Petri nets as a modeling language for the iterative development process of interactive robotic systems. Petri nets, particularly Timed Colored Petri nets (TCPNs), have the potential to unify various phases of the development process-design, specification, simulation, validation, implementation, and deployment. We additionally discuss future directions for creating a domain-specific variant of TCPNs tailored specifically for HRI systems development.more » « less
-
Demonstration is an effective end-user development paradigm for teaching robots how to perform new tasks. In this paper, we posit that demonstration is useful not only as a teaching tool, but also as a way to understand and assist end-user developers in thinking about a task at hand. As a first step toward gaining this understanding, we constructed a lightweight web interface to crowdsource step-by-step instructions of common household tasks, leveraging the imaginations and past experiences of potential end-user developers. As evidence of the utility of our interface, we deployed the interface on Amazon Mechanical Turk and collected 207 task traces that span 18 different task categories. We describe our vision for how these task traces can be operationalized as task models within end-user development tools and provide a roadmap for future work.more » « less
-
Service robots for personal use in the home and the workplace require end-user development solutions for swiftly scripting robot tasks as the need arises. Many existing solutions preserve ease, efficiency, and convenience through simple programming interfaces or by restricting task complexity. Others facilitate meticulous task design but often do so at the expense of simplicity and efficiency. There is a need for robot programming solutions that reconcile the complexity of robotics with the on-the-fly goals of end-user development. In response to this need, we present a novel, multimodal, and on-the-fly development system, Tabula. Inspired by a formative design study with a prototype, Tabula leverages a combination of spoken language for specifying the core of a robot task and sketching for contextualizing the core. The result is that developers can script partial, sloppy versions of robot programs to be completed and refined by a program synthesizer. Lastly, we demonstrate our anticipated use cases of Tabula via a set of application scenarios.more » « less
-
Socially interactive robots present numerous unique programming challenges for interaction developers. While modern authoring tools succeed at making the authoring experience approachable and convenient for developers from a wide variety of backgrounds, they are less successful at targeting assistance to developers based on the specific task or interaction being authored. We propose interaction templates, a data-driven solution for (1) matching in-progress robot programs to candidate task or interaction models and then (2) providing assistance to developers by using the matched models to generate modifications to in-progress programs. In this paper, we present the various dimensions that define first how interaction templates might be used, then how interaction templates may be represented, and finally how they might be collected.more » « less
-
Social robots have varied effectiveness when interacting with humans in different interaction contexts. A robot programmed to escort individuals to a different location, for instance, may behave more appropriately in a crowded airport than a quiet library, or vice versa. To address these issues, we exploit ideas from program synthesis and propose an approach to transforming the structure of hand-crafted interaction programs that uses user-scored execution traces as input, in which end users score their paths through the interaction based on their experience. Additionally, our approach guarantees that transformations to a program will not violate task and social expectations that must be maintained across contexts. We evaluated our approach by adapting a robot program to both real-world and simulated contexts and found evidence that making informed edits to the robot's program improves user experience.more » « less
-
Robots must exercise socially appropriate behavior when interacting with humans. How can we assist interaction designers to embed socially appropriate and avoid socially inappropriate behavior within human-robot interactions? We propose a multi-faceted interaction-design approach that intersects human-robot interaction and formal methods to help us achieve this goal. At the lowest level, designers create interactions from scratch and receive feedback from formal verification, while higher levels involve automated synthesis and repair of designs. In this extended abstract, we discuss past, present, and future work within each level of our design approach.more » « less