skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poudel, Pavan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mavronicolas, Marios (Ed.)
  2. Transactional memory has been receiving much attention from both academia and industry. In transactional memory, program code is split into transactions, blocks of code that appear to execute atomically. Transactions are executed speculatively and the speculative execution is supported through data versioning mechanism. Lazy versioning makes aborts fast but penalizes commits, whereas eager versioning makes commits fast but penalizes aborts. However, whether to use eager or lazy versioning to execute those transactions is still a hotly debated topic. Lazy versioning seems appropriate for write-dominated workloads and transactions in high contention scenarios whereas eager versioning seems appropriate for read-dominated workloads and transactions in low contention scenarios. This necessitates a priori knowledge on the workload and contention scenario to select an appropriate versioning method to achieve better performance. In this article, we present an adaptive versioning approach, called Adaptive, that dynamically switches between eager and lazy versioning at runtime, without the need of a priori knowledge on the workload and contention scenario but based on appropriate system parameters, so that the performance of a transactional memory system is always better than that is obtained using either eager or lazy versioning individually. We provide Adaptive for both persistent and non-persistent transactional memory systems using performance parameters appropriate for those systems. We implemented our adaptive versioning approach in the latest software transactional memory distribution TinySTM and extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and STAMPEDE suites. The results show significant benefits of our approach. Specifically, in persistent TM systems, our approach achieved performance improvements as much as 1.5× for execution time and as much as 240× for number of aborts, whereas our approach achieved performance improvements as much as 6.3× for execution time and as much as 170× for number of aborts in non-persistent transactional memory systems. 
    more » « less
  3. In this paper, we present GraphTM, an efficient and scalable framework for processing transactions in a distributed environment. The distributed environment is modeled as a graph where each node of the graph is a processing node that issues transactions. The objects that transactions use to execute are also on the graph nodes (the initial placement may be arbitrary). The transactions execute on the nodes which issue them after collecting all the objects that they need following the data-flow model of computation. This collection is done by issuing the requests for the objects as soon as transaction starts and wait until all required objects for the transaction come to the requesting node. The challenge is on how to schedule the transactions so that two crucial performance metrics, namely (i) total execution time to commit all the transactions, and (ii) total communication cost involved in moving the objects to the requesting nodes, are minimized. We implemented GraphTM in Java and assessed its performance through 3 micro-benchmarks and 5 complex benchmarks from STAMP benchmark suite on 5 different network topologies, namely, clique, line, grid, cluster, and star, that make an underlying communication network for a representative set of distributed systems commonly used in practice. The results show the efficiency and scalability of our approach. 
    more » « less
  4. Transactional memory has been receiving much attention from both academia and industry. In transactional memory, program code is split into transactions, blocks of code that appear to execute atomically. Transactions are executed speculatively and the speculative execution is supported through data versioning and conflict detection and resolution mechanisms. Lazy versioning makes aborts fast but penalizes commits, whereas eager versioning makes commits fast but penalizes aborts. In this paper, we present an adaptive versioning approach that dynamically switches between eager and lazy versioning at runtime based on appropriate system parameters so that the performance of a transactional memory system is always better than that is obtained using either eager or lazy versioning individually. We implemented our adaptive versioning approach in the latest TinySTM distribution and extensively evaluated it through 5 micro-benchmarks and 8 complex benchmarks from STAMP and STAMPEDE suites. The results show significant benefits of our approach, giving performance improvements as much as 6.3x for execution time and as much as 170x for number of aborts. 
    more » « less