With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30–50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to our
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract P–V data collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.Free, publicly-accessible full text available December 1, 2025 -
Free, publicly-accessible full text available September 1, 2025
-
Single-crystal X-ray diffraction on the structure of (Al,Fe)-bearing bridgmanite in the lower mantle
Abstract Here we have performed single-crystal X-ray diffraction (SCXRD) experiments on two high-quality crystal platelets of (Al,Fe)-bearing bridgmanite (Mg0.88Fe0.0653+Fe0.0352+Al0.03)(Al0.11Si0.90)O3 (Fe10-Al14-Bgm) up to 64.6(6) GPa at room temperature in a Boehler-Almax type diamond-anvil cell. Refinements on the collected SCXRD patterns reveal reliable structural information of single-crystal Fe10-Al14-Bgm, including unit-cell parameters, atomic coordinates, and anisotropic displacement parameters. Together with Mössbauer and electron microprobe analyses, our best single-crystal refinement model indicates that the sample contains ~6.5 mol% Fe3+, 3.5 mol% Fe2+, and 3 mol% Al3+ in the large pseudo-dodecahedral site (A site), and ~11 mol% Al3+ in the small octahedral site (B site). This may indicate that Al3+ in bridgmanite preferentially occupies the B site. Our results show that the compression of Fe10-Al14-Bgm with pressure causes monotonical decreases in the volumes of AO12 pseudo-dodecahedron and BO6 octahedron (VA and VB, respectively) as well as the associated A-O and B-O bond lengths. The interatomic angles of B-O1-B and B-O2-B decrease from 145.2–145.8° at 4.2(1) GPa to 143.3–143.5° at 64.6(6) GPa. Quantitative calculations of octahedral tilting angles (Ф) show that Ф increases smoothly with pressure. We found a linear relationship between the polyhedral volume ratio and the Ф in the bridgmanite with different compositions: VA/VB = –0.049Φ + 5.549. Our results indicate an increased distortion of the Fe10-Al14-Bgm structure with pressure, which might be related to the distortion of A-site Fe2+. The local environmental changes of A-site Fe2+ in bridgmanite could explain previous results on the hyperfine parameters, abnormal lattice thermal conductivity, mean force constant of iron bonds and other physical properties, which in turn provide insights into our understanding on the geophysics and geochemistry of the planet.
Free, publicly-accessible full text available May 1, 2025 -
Abstract In this study, we conduct extensive high‐pressure experiments to investigate phase stability in the cobalt‐nitrogen system. Through a combination of synthesis in a laser‐heated diamond anvil cell, first‐principles calculations, Raman spectroscopy, and single‐crystal X‐ray diffraction, we establish the stability fields of known high‐pressure phases, hexagonal NiAs‐type CoN, and marcasite‐type CoN2within the pressure range of 50–90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2,
Pnma ‐CoN and two polynitrides, CoN3and CoN5, within the pressure range of 90–120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3feature branched‐type nitrogen trimers (N3) and CoN5show π‐bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6polyhedral frameworks transit from face‐sharing (in CoN) to edge‐sharing (in CoN2and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high‐pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materialsFree, publicly-accessible full text available June 6, 2025 -
Kaolinite is formed by weathering of continental crustal rocks and is also found in marine sediments in the tropical region. Kaolinite and other layered hydrous silicate minerals are likely to play a vital role in transporting water into the Earth’s interior via subducting slabs. Recent studies have experimentally documented the expansion of the interlayer region by intercalation of water molecules at high pressures i.e., pressure-induced hydration. This is counter-intuitive since the interlayer region in the layered silicates is quite compressible, so it is important to understand the underlying mechanism that causes intercalation and expansion of the interlayer region. To address this, we explore the high-pressure behavior of natural kaolinite from Keokuk, Iowa. This sample is free of anatase impurities and thus helps to examine both low-energy (0–1200 cm−1) and high-energy hydroxyl (3000–4000 cm−1) regions using Raman spectroscopy and synchrotron-based powder X-ray diffraction. Our results show that the pressure dependence of the hydroxyl modes exhibits discontinuities at ~3 GPa and ~ 6.5 GPa. This is related to the polytypic transformation of Kaolinite from K-1 to K-II and K-II to K-III phase. Several low-energy Raman modes’ pressure dependence also exhibits similar discontinuous behavior. The synchrotron-based powder X-ray diffraction results also indicate discontinuous behavior in the pressure dependence of the unit-cell volume and lattice parameters. The analysis of the bulk and the linear compressibility reveals that kaolinite is extremely anisotropic and is likely to aid its geophysical detectability in subduction zone settings. The K-I to K-II polytypic transition is marked by the snapping of hydrogen bonds, thus at conditions relevant to the Earth’s interior, water molecules intercalate in the interlayer region and stabilize the crystal structure and help form the super-hydrated kaolinite which can transport significantly more water into the Earth’s interior.more » « lessFree, publicly-accessible full text available December 1, 2024
-
Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research.
Free, publicly-accessible full text available December 1, 2024 -
Abstract The high-pressure melting curve of FeO controls key aspects of Earth’s deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-
x O wüstite to pressures of Earth’s lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth’s present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth’s mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity.Free, publicly-accessible full text available December 1, 2024 -
unknown (Ed.)The Earth’s core–mantle boundary presents a dramatic change in materials, from silicate to metal. While little is known about chemical interactions between them, a thin layer with a lower velocity has been proposed at the topmost outer core (Eʹ layer) that is difficult to explain with a change in concentration of a single light element. Here we perform high-temperature and -pressure laser-heated diamond-anvil cell experiments and report the formation of SiO2 and FeHx from a reaction between water from hydrous minerals and Fe–Si alloys at the pressure–temperature conditions relevant to the Earth’s core–mantle boundary. We suggest that, if water has been delivered to the core–mantle boundary by subduction, this reaction could enable exchange of hydrogen and silicon between the mantle and the core. The resulting H-rich, Si-deficient layer formed at the topmost core would have a lower density, stabilizing chemical stratification at the top of the core, and a lower velocity. We suggest that such chemical exchange between the core and mantle over gigayears of deep transport of water may have contributed to the formation of the putative Eʹ layer.more » « lessFree, publicly-accessible full text available December 1, 2024
-
- (Ed.)Brillouin scattering spectroscopy has been used to obtain an accurate (<1%) ρ-P equation of state (EOS) of 1:1 and 9:1 H2-He molar mixtures from 0.5 to 5.4 GPa at 296 K. Our calculated equations of state indicate close agreement with the experimental data right to the freezing pressure of hydrogen at 5.4 GPa. The measured velocities agree on average, within 0.5%, of an ideal mixing model. The ρ-P EOSs presented have a standard deviation of under 0.3% from the measured densities and under 1% deviation from ideal mixing. A detailed discussion of the accuracy, precision, and sources of error in the measurement and analyses of our equations of state is presented.more » « less
-
Abstract Quantifying how grain size and/or deviatoric stress impact (Mg,Fe)2SiO4phase stability is critical for advancing our understanding of subduction processes and deep-focus earthquakes. Here, we demonstrate that well-resolved X-ray diffraction patterns can be obtained on nano-grained thin films within laser-heated diamond anvil cells (DACs) at hydrostatic pressures up to 24 GPa and temperatures up to 2300 K. Combined with well-established literature processes for tuning thin film grain size, biaxial stress, and substrate identity, these results suggest that DAC-loaded thin films can be useful for determining how grain size, deviatoric stress, and/or the coexistence of other phases influence high-pressure phase stability. As such, this novel DAC-loaded thin film approach may find use in a variety of earth science, planetary science, solid-state physics, and materials science applications.