skip to main content

Search for: All records

Creators/Authors contains: "Preuss, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With sensors becoming increasingly ubiquitous, there is tremendous potential for innovative Internet of Things (IoT) applications across a wide variety of domains, including healthcare, agriculture, entertainment, environmental monitoring, and transportation. The rapid growth of IoT applications has increased the demand for experienced professionals with strong IoT hands-on skills. However, undergraduate students in STEM education still lack experience in how to use IoT technologies to develop such innovative applications. This is in part because the current computing curricula do not adequately cover the fundamental concepts of IoT. This paper presents a case study from integrating innovative IoT technologies into the Computer Science (CS) curriculum at Prairie View A&M University (PVAMU). This paper presents a set of IoT learning modules that can be easily integrated into existing courses of CS curriculum to engage students in smart-IoT. The modules developed have been used to introduce a new project-based course in the CS department at PVAMU that focuses on intelligent IoT technologies. Findings from external evaluation of the curricular change are also presented. These note positive impacts on student interest in and learning about IoT across multiple courses and semesters. 
    more » « less
  2. In 1991, the Texas A&M University System was one of the first six Louis Stokes Alliance for Minority Participation (LSAMP) awardees. In the three decades of programming, several high impact practices (HIP) have been emphasized. One of them, undergraduate research (UR), is discussed. All members of the Alliance are part of the Texas A&M University System and undergraduate research was supported through a variety of initiatives on the Alliance campuses. Data presented chronicle student perspectives. Topics addressed are the impact of involvement in undergraduate research on academic outcomes, interest in further engagement with research, interest in graduate school, and career goals as well as the patterns of research engagement participants experienced and the forms of learning that resulted. These materials are presented regarding an audience that was overwhelmingly underrepresented minority students all of whom were pursuing science, technology, engineering, or mathematics (STEM) degrees. Students reported UR influenced their academic outcomes, further engagement with research, interest in graduate school, and career goals while facilitating learning and skill development. These findings, for URM students from institutions with three different Carnegie classifications that are a predominantly white institution, two Hispanic-serving institutions (HSIs), and a historically Black college or university (HBCU), parallel outcomes reported in the literature for investigations focused on general student populations suggesting that UR benefits are generalizable regardless of institution type and ethnicity/race of the participant. Findings also suggest that these patterns apply regardless of the student’s year in school. Material presented details the research elements commonly included in TAMUS LSAMP UR experiences and in which areas students reported the most learning. Thus, this document touches on topics important in addressing development of an adequate, well-trained, and diverse STEM workforce. It also confirms the efficacy of a highly replicable approach to facilitating a HIP, undergraduate research, with students from underrepresented groups. 
    more » « less
  3. Akerson, V. ; Sahin, I. (Ed.)
    The Texas A&M University (TAMU) Louis Stokes Alliance for Minority Participation (LSAMP) office provided funding to the Texas A&M University College of Engineering to support student participation in the Engineering Learning Community Introduction to Research (ELCIR) program. ELCIR is a two-week, study abroad, research program implemented in a learning community pattern. ELCIR has three purposes: (1) to expose sophomores to research, (2) to introduce students to cultural differences and global challenges, and (3) to provide students with the basic tools to prepare them for future research involvement. Participation in the multi-term program, which takes place at TAMU and in the Yucatan Peninsula, is limited to first-generation college students and/or students from underrepresented populations. The external evaluator for TAMU System LSAMP developed a survey for students to complete after their participation in the ELCIR international experience. Survey questions were designed to identify the impact of participation in ELCIR on students and gather participant suggestions for improvement of future LSAMP-supported international research experiences. The evaluator compiled information gathered from 92 participants during five years of ELCIR programming. This paper describes the participants’ self-reports of experience with and continued interest in study abroad, interest in another similar experience, subsequent involvement with undergraduate research, and ELCIR’s impact on their confidence regarding international travel, their awareness of, interest in, and plans regarding graduate school, their educational or career plans, and interest in employment outside the United States. Interest in or increases in interest in international travel, study abroad programming, graduate school, and employment outside the United States were found. These findings can inform engineering education programming for first-generation and minority students, an area of national need, for institutions across the United States. 
    more » « less
  4. The Texas A&M University System was one of the first six Louis Stokes Alliance for Minority Participation (LSAMP) awardees. All current members of the Alliance are part of the Texas A&M University System. Many high impact practices (HIP) have been emphasized in the Alliance’s 30 years of programming with Diversity/Global Learning as a focus in the last 14 years. Diversity/Global Learning has been supported in two formats on the Alliance campuses, through traditional study abroad programming and a College of Engineering initiative. Data presented were derived from a number of sources, project evaluation information regarding student perspectives and outcomes, survey research conducted by an independent party, and institutional data and online platforms accessed to assess student outcomes. Triangulation was completed between data sets. Results indicate both forms of programming were efficacious for underrepresented and first-generation students. Outcomes reported were substantial increases in awareness of and interest in graduate school, increases in cultural learning, confidence in travel outside the United States, learning relevant to major, commitment to continuing involvement with research, interest in another similar experience, and willingness to consider employment outside the U.S. Participants reported statistically significant growth in personal, professional, and research skills. They persisted, participated in additional study abroad experiences, and graduated at higher rates than their institutional peers with approximately 90% of informants indicating intention to consider graduate school in the future, over 40% indicating intent to attend immediately following undergraduate study, and 39.4% of 2007–2014 participants enrolling in graduate school by the spring of 2021. Programming described is replicable at and likely to be efficacious for a wide variety of institutions of higher education. 
    more » « less
  5. The Texas A&M University System (TAMUS) received funding from the National Science Foundation (NSF) for a Louis Stokes Alliance for Minority Participation (LSAMP) project in 1991 as one of the six initial awardees. As part of these efforts and upon reaching eligibility, the TAMUS LSAMP applied for and received additional funding to support a Bridge to the Doctorate (BTD) program. BTD programming provides financial, educational, and social support to incoming STEM master’s degree and PhD students for the first two years of their graduate study. BTD cohorts consist of up to 12 fellows who participate in a program of academic and professional development seminars and workshops. In project evaluation, annual interviews were conducted with the TAMUS BTD participants, the vast majority of whom were underrepresented minorities (92%). During the interviews, the BTD students were asked to discuss ten topics some of which addressed concerns specific to the implementation of the BTD project. This report considers answers provided in the five topic areas which have broader applicability: 1) the learning achieved by participants through participation in BTD, 2) the personal impact of participation in BTD, 3) the influence of BTD on informants’ educational goals, 4) the influence of BTD on informants’ career goals, and 5) barriers the BTD participants perceived to pursuing a PhD. Eighty project participants responded to the questions between 2009 and 2018. They were from eight distinct cohorts of BTD students and represented 32 different areas of STEM specialization. Qualitative analysis of their responses confirmed that students perceived the elements of the TAMUS BTD project to be efficacious and that there was a set of nine seminars from which participants consistently reported benefit. Additional findings were eight key areas in which learning was reported by participants, four areas in which the programming  had personal impact, five influences on educational goals,  nine impacts on career goals, and a detailed list of barriers graduate students who are underrepresented minorities (URM) perceive to pursuing a doctoral degree. The proven and easily replicated pattern of support programming, the demonstrated results of this programming, and insight into barriers URMs perceive to pursuing a STEM doctorate are immediately applicable to URM graduate student support at many institutions of higher education. 
    more » « less