Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt ratesAbstract Rift propagation, rather than basal melt, drives the destabilization and disintegration of the Thwaites Eastern Ice Shelf. Since 2016, rifts have episodically advanced throughout the central ice-shelf area, with rapid propagation events occurring during austral spring. The ice shelf's speed has increased by ~70% during this period, transitioning from a rate of 1.65 m d−1in 2019 to 2.85 m d−1by early 2023 in the central area. The increase in longitudinal strain rates near the grounding zone has led to full-thickness rifts and melange-filled gaps since 2020. A recent sea-ice break out has accelerated retreat at the western calving front, effectively separating the ice shelf from what remained of its northwestern pinning point. Meanwhile, a distributed set of phase-sensitive radar measurements indicates that the basal melting rate is generally small, likely due to a widespread robust ocean stratification beneath the ice–ocean interface that suppresses basal melt despite the presence of substantial oceanic heat at depth. These observations in combination with damage modeling show that, while ocean forcing is responsible for triggering the current West Antarctic ice retreat, the Thwaites Eastern Ice Shelf is experiencing dynamic feedbacks over decadal timescales that are driving ice-shelf disintegration, now independent of basal melt.more » « less
-
ABSTRACT During the common-envelope binary interaction, the expanding layers of the gaseous common envelope recombine and the resulting recombination energy has been suggested as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative study between simulations with and without the inclusion of recombination energy. We use two distinct setups, comprising a 0.88- and 1.8-M⊙ giants, that have been studied before and can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not affected by the choice of equation of state (EoS). In other words, simulations that unbind but a small fraction of the envelope result in similar final separations to those that, thanks to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS results in a much greater fraction of unbound envelope and we demonstrate the cause of this to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy that is allowed to do work should be about half of that which our adiabatic simulations use. (iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen recombination energy that unbinds the gas and we determine that all helium recombination energy is thermalized in the envelope and does work. (v) The outer regions of the expanding common envelope are likely to see the formation of dust. This dust would promote additional unbinding and shaping of the ejected envelope into axisymmetric morphologies.more » « less
-
null (Ed.)ABSTRACT We present 1.3 mm continuum ALMA long-baseline observations at 3–5 au resolution of 10 of the brightest discs from the Ophiuchus DIsc Survey Employing ALMA (ODISEA) project. We identify a total of 26 narrow rings and gaps distributed in 8 sources and 3 discs with small dust cavities (r <10 au). We find that two discs around embedded protostars lack the clear gaps and rings that are ubiquitous in more evolved sources with Class II SEDs. Our sample includes five objects with previously known large dust cavities (r >20 au). We find that the 1.3 mm radial profiles of these objects are in good agreement with those produced by numerical simulations of dust evolution and planet–disc interactions, which predict the accumulation of mm-sized grains at the edges of planet-induced cavities. Our long-baseline observations resulted in the largest sample of discs observed at ∼3–5 au resolution in any given star-forming region (15 objects when combined with Ophiuchus objects in the DSHARP Large Program) and allow for a demographic study of the brightest $$\sim\! 5{{\ \rm per\ cent}}$$ of the discs in Ophiuchus (i.e. the most likely formation sites of giant planets in the cloud). We use this unique sample to propose an evolutionary sequence and discuss a scenario in which the substructures observed in massive protoplanetary discs are mainly the result of planet formation and dust evolution. If this scenario is correct, the detailed study of disc substructures might provide a window to investigate a population of planets that remains mostly undetectable by other techniques.more » « less