skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Przybylo, Vanessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Robust quantification of predictive uncertainty is a critical addition needed for machine learning applied to weather and climate problems to improve the understanding of what is driving prediction sensitivity. Ensembles of machine learning models provide predictive uncertainty estimates in a conceptually simple way but require multiple models for training and prediction, increasing computational cost and latency. Parametric deep learning can estimate uncertainty with one model by predicting the parameters of a probability distribution but does not account for epistemic uncertainty. Evidential deep learning, a technique that extends parametric deep learning to higher-order distributions, can account for both aleatoric and epistemic uncertainties with one model. This study compares the uncertainty derived from evidential neural networks to that obtained from ensembles. Through applications of the classification of winter precipitation type and regression of surface-layer fluxes, we show evidential deep learning models attaining predictive accuracy rivaling standard methods while robustly quantifying both sources of uncertainty. We evaluate the uncertainty in terms of how well the predictions are calibrated and how well the uncertainty correlates with prediction error. Analyses of uncertainty in the context of the inputs reveal sensitivities to underlying meteorological processes, facilitating interpretation of the models. The conceptual simplicity, interpretability, and computational efficiency of evidential neural networks make them highly extensible, offering a promising approach for reliable and practical uncertainty quantification in Earth system science modeling. To encourage broader adoption of evidential deep learning, we have developed a new Python package, Machine Integration and Learning for Earth Systems (MILES) group Generalized Uncertainty for Earth System Science (GUESS) (MILES-GUESS) (https://github.com/ai2es/miles-guess), that enables users to train and evaluate both evidential and ensemble deep learning. Significance StatementThis study demonstrates a new technique, evidential deep learning, for robust and computationally efficient uncertainty quantification in modeling the Earth system. The method integrates probabilistic principles into deep neural networks, enabling the estimation of both aleatoric uncertainty from noisy data and epistemic uncertainty from model limitations using a single model. Our analyses reveal how decomposing these uncertainties provides valuable insights into reliability, accuracy, and model shortcomings. We show that the approach can rival standard methods in classification and regression tasks within atmospheric science while offering practical advantages such as computational efficiency. With further advances, evidential networks have the potential to enhance risk assessment and decision-making across meteorology by improving uncertainty quantification, a longstanding challenge. This work establishes a strong foundation and motivation for the broader adoption of evidential learning, where properly quantifying uncertainties is critical yet lacking. 
    more » « less
  2. Abstract Artificial intelligence (AI) and machine learning (ML) pose a challenge for achieving science that is both reproducible and replicable. The challenge is compounded in supervised models that depend on manually labeled training data, as they introduce additional decision‐making and processes that require thorough documentation and reporting. We address these limitations by providing an approach to hand labeling training data for supervised ML that integrates quantitative content analysis (QCA)—a method from social science research. The QCA approach provides a rigorous and well‐documented hand labeling procedure to improve the replicability and reproducibility of supervised ML applications in Earth systems science (ESS), as well as the ability to evaluate them. Specifically, the approach requires (a) the articulation and documentation of the exact decision‐making process used for assigning hand labels in a “codebook” and (b) an empirical evaluation of the reliability” of the hand labelers. In this paper, we outline the contributions of QCA to the field, along with an overview of the general approach. We then provide a case study to further demonstrate how this framework has and can be applied when developing supervised ML models for applications in ESS. With this approach, we provide an actionable path forward for addressing ethical considerations and goals outlined by recent AGU work on ML ethics in ESS. 
    more » « less
  3. Abstract Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences. 
    more » « less