skip to main content


This content will become publicly available on June 1, 2025

Title: Trust and trustworthy artificial intelligence: A research agenda for AI in the environmental sciences
Abstract

Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.

 
more » « less
Award ID(s):
2019758
PAR ID:
10512616
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Risk Analysis
Volume:
44
Issue:
6
ISSN:
0272-4332
Page Range / eLocation ID:
1498 to 1513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Artificial Intelligence applications are rapidly expanding across weather, climate, and natural hazards. AI can be used to assist with forecasting weather and climate risks, including forecasting both the chance that a hazard will occur and the negative impacts from it, which means AI can help protect lives, property, and livelihoods on a global scale in our changing climate. To ensure that we are achieving this goal, the AI must be developed to be trustworthy, which is a complex and multifaceted undertaking. We present our work from the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), where we are taking a convergence research approach. Our work deeply integrates across AI, environmental, and risk communication sciences. This involves collaboration with professional end-users to investigate how they assess the trustworthiness and usefulness of AI methods for forecasting natural hazards. In turn, we use this knowledge to develop AI that is more trustworthy. We discuss how and why end-users may trust or distrust AI methods for multiple natural hazards, including winter weather, tropical cyclones, severe storms, and coastal oceanography.

     
    more » « less
  2. Abstract

    The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user‐informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.

     
    more » « less
  3. Abstract Many of our generation’s most pressing environmental science problems are wicked problems, which means they cannot be cleanly isolated and solved with a single ‘correct’ answer (e.g., Rittel 1973; Wirz 2021). The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) seeks to address such problems by developing synergistic approaches with a team of scientists from three disciplines: environmental science (including atmospheric, ocean, and other physical sciences), AI, and social science including risk communication. As part of our work, we developed a novel approach to summer school, held from June 27-30, 2022. The goal of this summer school was to teach a new generation of environmental scientists how to cross disciplines and develop approaches that integrate all three disciplinary perspectives and approaches in order to solve environmental science problems. In addition to a lecture series that focused on the synthesis of AI, environmental science, and risk communication, this year’s summer school included a unique Trust-a-thon component where participants gained hands-on experience applying both risk communication and explainable AI techniques to pre-trained ML models. We had 677 participants from 63 countries register and attend online. Lecture topics included trust and trustworthiness (Day 1), explainability and interpretability (Day 2), data and workflows (Day 3), and uncertainty quantification (Day 4). For the Trust-a-thon we developed challenge problems for three different application domains: (1) severe storms, (2) tropical cyclones, and (3) space weather. Each domain had associated user persona to guide user-centered development. 
    more » « less
  4. Abstract

    As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful andusedtools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts.

    Significance Statement

    We used a mixed-methods quantitative and qualitative approach to understand how National Weather Service (NWS) forecasters 1) make guidance use decisions within their operational forecasting process and 2) assess the trustworthiness of prototype guidance developed using artificial intelligence (AI). When taken as a whole, our findings illustrate that forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically and suggest that developers must center the end user when creating new AI guidance tools to ensure that the developed tools are useful andused.

     
    more » « less
  5. In 2021 GW Engineering was awarded funding to launch an interdisciplinary program on trustworthy AI. Designing Trustworthy AI in Systems (or DTAIS) brings together PhD students from systems engineering and computer science to co-design research and tackle the conceptual and methodological bridge building that cross disciplinary work demands. This paper focuses on how this work has been accomplished thus far, in the context of the cornerstone summer incubator, and shares some of the lessons learned. The 10-week summer incubator course, which was designed specifically for this program, brings systems engineers and computer science PhD students to make sense of “AI in the wild” (real world settings) and build short-run research prototypes together. Leveraging the interdisciplinarity of the core program faculty, the group established a fertile middle ground where a mixed method ethos, design sprint rhythm and intentional sense of community enlivens the normative student-advisor modality most PhD students experience. Along the way, the definitional challenge of what is meant exactly by trust and trustworthiness within a particular problem domain and literature is given plenty of room to form, fall apart and form again through discussion, practice, and reflection. With two iterations of the summer incubator course to glean from, we report on the difficulties of rewiring student-advisor dynamics and the positive effects of growing a diverse community. This represents a potential roadmap for how to scaffold interdisciplinarity in engineering doctoral education. 
    more » « less