skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Puddu, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
  2. CMB-S4, the next-generation ground-based cosmic microwave background (CMB) observatory, will provide detailed maps of the CMB at millimeter wavelengths to dramatically advance our understanding of the origin and evolution of the universe. CMB-S4 will deploy large- and small-aperture telescopes with hundreds of thousands of detectors to observe the CMB at arcminute and degree resolutions at millimeter wavelengths. Inflationary science benefits from a deep delensing survey at arcminute resolutions capable of observing a large field of view at millimeter wavelengths. This kind of survey acts as a complement to a degree angular resolution survey. The delensing survey requires a nearly uniform distribution of cameras per frequency band across the focal plane. We present a large-throughput (9.4° field of view), large-aperture (5-m diameter) freeform three-mirror anastigmatic telescope and an array of 85 cameras for CMB observations at arcminute resolutions, which meets the needs of the delensing survey of CMB-S4. A detailed prescription of this three-mirror telescope and cameras is provided, with a series of numerical calculations that indicates expected optical performance and mechanical tolerance. 
    more » « less
  3. ABSTRACT We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼5σ significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper. 
    more » « less
  4. Abstract The increasing statistical power of cosmic microwave background (CMB) datasets requires a commensurate effort in understanding their noise properties. The noise in maps from ground-based instruments is dominated by large-scale correlations, which poses a modeling challenge. This paper develops novel models of the complex noise covariance structure in the Atacama Cosmology Telescope Data Release 6 (ACT DR6) maps. We first enumerate the noise properties that arise from the combination of the atmosphere and the ACT scan strategy. We then prescribe a class of Gaussian, map-based noise models, including a new wavelet-based approach that uses directional wavelet kernels for modeling correlated instrumental noise. The models are empirical, whose only inputs are a small number of independent realizations of the same region of sky. We evaluate the performance of these models against the ACT DR6 data by drawing ensembles of noise realizations. Applying these simulations to the ACT DR6 power spectrum pipeline reveals a ∼ 20% excess in the covariance matrix diagonal when compared to an analytic expression that assumes noise properties are uniquely described by their power spectrum. Along with our public code,mnms, this work establishes a necessary element in the science pipelines of both ACT DR6 and future ground-based CMB experiments such as the Simons Observatory (SO). 
    more » « less
  5. Abstract We describe the measurement and treatment of the telescope beams for the Atacama Cosmology Telescope's fourth data release, DR4. Observations of Uranus are used to measure the central portion (<12 ' ) of the beams to roughly -40 dB of the peak. Such planet maps in intensity are used to construct azimuthally averaged beam profiles, which are fit with a physically motivated model before being transformed into Fourier space. We investigate and quantify a number of percent-level corrections to the beams, all of which are important for precision cosmology. Uranus maps in polarization are used to measure the temperature-to-polarization leakage in the main part of the beams, which is ≲ 1% (2.5%) at 150 GHz (98 GHz). The beams also have polarized sidelobes, which are measured with observations of Saturn and deprojected from the ACT time-ordered data. Notable changes relative to past ACT beam analyses include an improved subtraction of the atmospheric effects from Uranus calibration maps, incorporation of a scattering term in the beam profile model, and refinements to the beam model uncertainties and the main temperature-to-polarization leakage terms in the ACT power spectrum analysis. 
    more » « less
  6. Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.840 ± 0.028 , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.831 ± 0.023 , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys. 
    more » « less
  7. Abstract We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σsignificance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofAlens= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model andAlens= 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S 8 CMBL σ 8 Ω m / 0.3 0.25 of S 8 CMBL = 0.818 ± 0.022 from ACT DR6 CMB lensing alone and S 8 CMBL = 0.813 ± 0.018 when combining ACT DR6 and PlanckNPIPECMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts. 
    more » « less
  8. Abstract We present a detailed overview of the science goals and predictions for the Prime-Cam direct-detection camera–spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6 m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of institutions led by Cornell University and sited at more than 5600 m on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way. Prime-Cam on the FYST will have a mapping speed that is over 10 times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies. 
    more » « less
  9. null (Ed.)