Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This Work in Progress paper describes the development and implementation of a new pathway for doctoral candidates in STEM programs to satisfy their capstone degree requirements that has the potential to modernize the STEM Ph.D. The model, Pathways to Entrepreneurship, aims to bring greater alignment between doctoral degrees and the rapidly changing employment landscape. Programmatic and curricular innovations to the current Ph.D. model are described along with the rationale. Project goals are to develop an alternative roadmap for STEM doctoral students, that is scalable, and to investigate pedagogical implications of these innovations, for doctoral education and for broadening participation of women, veteran students, and those traditionally underrepresented in STEM. We present the assessment approach to evaluate program efficacy, and share baseline information regarding student self-efficacy toward entrepreneurship. The aim of this project is to increase entrepreneurship rates among graduates, and to propagate evidence-based practices to STEM graduate programs. Should our innovations be adopted by other programs based on our anticipated findings, a separate Doctor of Innovation track might emerge as a viable alternative to the current Doctor of Philosophy track.more » « lessFree, publicly-accessible full text available April 17, 2026
-
Current structures of STEM graduate programs raise questions about addressing graduates’ interest in multiple career paths, and how programs prepare graduates for positions increasingly available in varied occupations. This problem is addressed through an innovative doctoral program in engineering, Pathways to Entrepreneurship (PAtENT), which works to develop a scalable alternative student-centered framework. This research explores how this program responds to calls for graduate STEM education to address changes in science and engineering, the nature of the workforce, career goals, and how program components build an entrepreneurial mindset. A mixed-methods design includes a curriculum analysis showing alignment of program components to recommendations for Ph.D. STEM programs from the National Academy of Sciences, Engineering, and Medicine. Direct measures include surveys and interviews developed for current doctoral students and faculty to describe students’ and faculty perspectives about program components, particularly entrepreneurship and the patent process. The curriculum analysis shows strong alignment of the PAtENT program components and activities to the ten elements of the National Academies’ recommendations. A survey of graduate students in engineering, computing, and business show strong measures in engineering and entrepreneurial self-efficacy. Interviews of program participants and faculty demonstrate strong interest in patents and developing entrepreneurship. This innovative program in engineering focusing on obtaining a patent as a capstone shows potential to reform doctoral studies, so candidates are prepared not only for academic careers but a range of industry and government work environments. This work will lead to development of a model for other graduate STEM programs.more » « lessFree, publicly-accessible full text available December 31, 2025
-
Though the field of engineering has experienced significant changes over the last several decades, many graduate programs have not made any substantive changes in their curriculum. This is particularly important given that data show that over sixty percent of new doctorate program graduates do not go into academic research [1]. Recognizing the critical need for change, the National Academies of Sciences, Engineering, and Medicine [2] made recommendations for graduate STEM education programs. The intent was to examine how graduate STEM education can focus on evidence-based practices which better respond to the needs of students and broader society. The Committee on Revitalizing Graduate STEM Education identified key competencies for educational systems so that they are dynamic in addressing current needs of students while anticipating future contexts in STEM graduate education. These competencies were the framework for this research which employed curriculum analysis methods to the PAtENT (Pathways to Entrepreneurship), an alternate pathway to the doctorate in engineering at this University. The curriculum analysis included the two components of the Academies’ recommendations: 1) Develop scientific and technological literacy and conduct original research and 2) Develop leadership, communication, and professional competencies. The research used a dimensional core curriculum analysis [3 - 4] to analyze program information including documents, artifacts, and other data related to coursework, original research, student classroom experiences as well as laboratories and fieldwork. The descriptive content analysis used a systematic process to allow for identifying attributes within documents and data in order to align identified components to program activities and structures. Coding for the curriculum analysis used an inductive, thematic and descriptive approach in aligning program components and activities to ten elements listed for the two components in the Academies’ recommendations. Document analysis identified curriculum expectations and program outcomes that were tagged to the elements in the recommendations. The goal of this research was to identify PAtENT program activities and features that best addressed a particular element. Procedures followed key processes from curriculum study methodology including identifying desired outcomes, determining what content and activities contributed to those outcomes, and identifying experiences developed to result in those intended outcomes [5 - 7]. This systematic process identified attributes and components of PAtENT program features that aligned to the ten elements.more » « lessFree, publicly-accessible full text available June 23, 2025
-
Based on a current Research to Practice Partnership (RPP) between a southeastern public university and a state virtual public school in the United States, ten high school teachers from a virtual school who teach Computer Science (CS) online participated in a summer workshop to collaborate through a participatory action research project regarding design, facilitation, and evaluation strategies to be included in effective professional development. The questions were posed through an online collaborative Jamboard during the summer workshop. The teacher posts were qualitatively analyzed to identify common themes. Recommendations for professional development on design included CS content, how to teach CS, and CS tools and activities. For facilitation, they recommended resources for supplemental instruction and feedback tools for providing feedback in various modalities and a tool repository. For assessment, they recommended content knowledge assessments, including lab assignments, single and pair programming, and coding assessments. Overall recommendations for a professional development course to teach CS online were also offered.more » « less
-
This paper reports on how 10 middle and high school preservice teachers (PSTs) designed a social justice focused lesson using the culturally responsive mathematics teaching (CRMT) tool. Results from our analysis indicate that most of the PSTs were able to select appropriate social justice topics, though not all the PSTs integrated mathematics and social justice throughout their lessons. The results show that most of the PSTs need more experience with mathematization, handling controversial discussions, and developing transformative student action. Our work also led to a modification of the tool (CRMT-M). We discuss the implications of the study for mathematics teacher preparation.more » « less
-
Developing Online Professional Development for High School Teachers to Teach Computer Science OnlineCreating effective professional development is critical to support high school teachers who teach computer science (CS) online. The context of this study is based on a current Research to Practice Partnership (RPP) between the University of North Carolina at Charlotte in the United States and North Carolina Virtual Public School (NCVPS). Ten high school teachers from the NCVPS who teach CS online participated in a summer workshop and recommended design, facilitation, and evaluation strategies to be included in effective professional development (PD). The summer workshop was conducted synchronously via Zoom. It provided the opportunity to discuss teacher perceptions related to the research questions "What design, facilitation, and assessment strategies are helpful to include in an AP Computer Science Advanced course?" and "What recommendations do you have for designing an online professional development course for high school teachers to teach computer science online?" The questions were posed through an online collaborative Jamboard, and the affinity diagram method was used for data collection and document analysis was conducted. The teacher posts were qualitatively analyzed to identify common themes. Findings for professional development on content design included CS content, how to teach CS, and CS tools and activities. For assessment, they recommended content knowledge assessments, including lab assignments, single and pair programming, and coding assessments. They recommended tools for supplemental instruction, integration of discussion boards for interaction, and tools and strategies to provide feedback for professional development.more » « less