Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 914 ± 0 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M⊙, at least 10 times lower than its host galaxy’s central black hole mass (≳108M⊙). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M⊙). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass.more » « lessFree, publicly-accessible full text available May 30, 2026
- 
            Abstract The direct detection of core-collapse supernova (SN) progenitor stars is a powerful way of probing the last stages of stellar evolution. However, detections in archival Hubble Space Telescope images are limited to about one detection per year. Here, we explore whether we can increase the detection rate by using data from ground-based wide-field surveys. Due to crowding and atmospheric blurring, progenitor stars can typically not be identified in preexplosion images alone. Instead, we combine many pre-SN and late-time images to search for the disappearance of the progenitor star. As a proof of concept, we implement our search of ZTF data. For a few hundred images, we achieve limiting magnitudes of ∼23 mag in thegandrbands. However, no progenitor stars or long-lived outbursts are detected for 29 SNe withinz≤ 0.01, and the ZTF limits are typically several magnitudes less constraining than detected progenitors in the literature. Next, we estimate progenitor detection rates for the Legacy Survey of Space and Time (LSST) with the Vera C. Rubin telescope by simulating a population of nearby SNe. The background from bright host galaxies reduces the nominal LSST sensitivity by, on average, 0.4 mag. Over the 10 yr survey, we expect the detection of ∼50 red supergiant progenitors and several yellow and blue supergiants. The progenitors of Type Ib and Ic SNe will be detectable if they are brighter than −4.7 or −4.0 mag in the LSSTiband, respectively. In addition, we expect the detection of hundreds of pre-SN outbursts depending on their brightness and duration.more » « less
- 
            Abstract About 3%–10% of Type I active galactic nuclei (AGNs) have double-peaked broad Balmer lines in their optical spectra originating from the motion of gas in their accretion disk. Double-peaked profiles arise not only in AGNs, but occasionally appear during optical flares from tidal disruption events and changing-state AGNs. In this paper, we identify 250 double-peaked emitters (DPEs) among a parent sample of optically variable broad-line AGNs in the Zwicky Transient Facility (ZTF) survey, corresponding to a DPE fraction of 19%. We model spectra of the broad Hαemission-line regions and provide a catalog of the fitted accretion disk properties for the 250 DPEs. Analysis of power spectra derived from the 5 yr ZTF light curves finds that DPE light curves have similar amplitudes and power-law indices to other broad-line AGNs. Follow-up spectroscopy of 12 DPEs reveals that ∼50% display significant changes in the relative strengths of their red and blue peaks over long 10–20 yr timescales, indicating that broad-line profile changes arising from spiral arm or hotspot rotation are common among optically variable DPEs. Analysis of the accretion disk parameters derived from spectroscopic modeling provides evidence that DPEs are not in a special accretion state, but are simply normal broad-line AGNs viewed under the right conditions for the accretion disk to be easily visible. We include inspiraling supermassive black hole binary candidate SDSSJ1430+2303 in our analysis, and discuss how its photometric and spectroscopic variability is consistent with the disk-emitting AGN population in the ZTF survey.more » « less
- 
            Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M⊙<MBH< 106M⊙). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M⊙) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2M☉and an envelope radius of ≈50R⊙. The extremely low nickel mass and low ejecta mass (≈0.5M⊙) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M⊙) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M☉) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys.more » « less
- 
            Abstract We present the first gri -band period–luminosity (PL) and period–Wesenheit (PW) relations for 37 Type II Cepheids (TIICs) located in 18 globular clusters based on photometric data from the Zwicky Transient Facility. We also updated BVIJHK -band absolute magnitudes for 58 TIICs in 24 globular clusters using the latest homogeneous distances to the globular clusters. The slopes of g / r / i - and B / V / I -band PL relations are found to be statistically consistent when using the same sample of distance and reddening. We employed the calibration of ri -band PL/PW relations in globular clusters to estimate a distance to M31 based on a sample of ∼270 TIICs from the PAndromeda project. The distance modulus to M31, obtained using calibrated ri -band PW relation, agrees well with the recent determination based on classical Cepheids. However, distance moduli derived using the calibrated r - and i -band PL relations are systematically smaller by ∼0.2 mag, suggesting there are possible additional systematic errors on the PL relations. Finally, we also derive the period–color (PC) relations and for the first time the period–Q-index (PQ) relations, where the Q -index is reddening free, for our sample of TIICs. The PC relations based on ( r − i ) and near-infrared colors and the PQ relations are found to be relatively independent of the pulsation periods.more » « less
- 
            Abstract We present the first absolute calibration for the yellow post-asymptotic-giant-branch (PAGB) stars in thegandrband based on time-series observations from the Zwicky Transient Facility. These absolute magnitudes were calibrated using four yellow PAGB stars (one nonvarying star and three Type II Cepheids) located in the globular clusters. We provide two calibrations of thegr-band absolute magnitudes for the yellow PAGB stars, by using an arithmetic mean and a linear regression. We demonstrate that the linear regression provides a better fit to theg-band absolute magnitudes for the yellow PAGB stars. These calibratedgr-band absolute magnitudes have a potential to be used as Population II distance indicators in the era of time-domain synoptic sky surveys.more » « less
- 
            Abstract We present the discovery and analysis of SN 2022oqm, a Type Ic supernova (SN) detected <1 day after the explosion. The SN rises to a blue and short-lived (2 days) initial peak. Early-time spectral observations of SN 2022oqm show a hot (40,000 K) continuum with high ionization C and O absorption features at velocities of 4000 km s−1, while its photospheric radius expands at 20,000 km s−1, indicating a pre-existing distribution of expanding C/O material. After ∼2.5 days, both the spectrum and light curves evolve into those of a typical SN Ic, with line velocities of ∼10,000 km s−1, in agreement with the evolution of the photospheric radius. The optical light curves reach a second peak att≈ 15 days. Byt= 60 days, the spectrum of SN 2022oqm becomes nearly nebular, displaying strong Caiiand [Caii] emission with no detectable [Oi], marking this event as Ca-rich. The early behavior can be explained by 10−3M⊙of optically thin circumstellar material (CSM) surrounding either (1) a massive compact progenitor such as a Wolf–Rayet star, (2) a massive stripped progenitor with an extended envelope, or (3) a binary system with a white dwarf. We propose that the early-time light curve is powered by both the interaction of the ejecta with the optically thin CSM and shock cooling (in the massive star scenario). The observations can be explained by CSM that is optically thick to X-ray photons, is optically thick in the lines as seen in the spectra, and is optically thin to visible-light continuum photons that come either from downscattered X-rays or from the shock-heated ejecta. Calculations show that this scenario is self-consistent.more » « less
- 
            Abstract Using the Zwicky Transient Facility, in 2021 February we identified the first known outburst of the black hole X-ray transient XTE J1859+226 since its discovery in 1999. The outburst was visible at X-ray, UV, and optical wavelengths for less than 20 days, substantially shorter than its full outburst of 320 days in 1999, and the observed peak luminosity was 2 orders of magnitude lower. Its peak bolometric luminosity was only 2 × 1035erg s−1, implying an Eddington fraction of about 3 × 10−4. The source remained in the hard spectral state throughout the outburst. From optical spectroscopy measurements we estimate an outer disk radius of 1011cm. The low observed X-ray luminosity is not sufficient to irradiate the entire disk, but we observe a surprising exponential decline in the X-ray light curve. These observations highlight the potential of optical and infrared synoptic surveys to discover low-luminosity activity from X-ray transients.more » « less
- 
            Abstract We study a magnitude-limited sample of 36 broad-lined type Ic supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between 2018 March and 2021 August), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in therband of mag. Using spectra obtained around peak light, we compute expansion velocities from the Feii5169 Å line for each event with high enough signal-to-noise ratio spectra, and find an average value of km s−1. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of , , and erg. Thirteen events have radio observations from the Very Large Array, with eight detections and five non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically inferred explosion properties, and there are no statistically significant correlations present between the events’ radio luminosities and optically inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL and likely their relativistic jet formation mechanisms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
