Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however, usually involves complex multilayer packaging and external cabling, which is resource intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled- gates across all qubit pairs, with a benchmarked average fidelity of and best fidelity of , limited mainly by dephasing in the qubits. We also generate multiqubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of and , respectively. This approach promises efficient scaling to larger-scale quantum circuits and offers a pathway for implementing quantum algorithms and error-correction schemes that benefit from enhanced qubit connectivity. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
-
In circuit quantum electrodynamics, qubits are typically measured using dispersively coupled readout resonators. Coupling between each readout resonator and its electrical environment, however, reduces the qubit lifetime via the Purcell effect. Inserting a Purcell filter counters this effect while maintaining high readout fidelity but reduces measurement bandwidth and, thus, limits multiplexing readout capacity. In this Letter, we develop and implement a multi-stage bandpass Purcell filter that yields better qubit protection while simultaneously increasing measurement bandwidth and multiplexed capacity. We report on the experimental performance of our transmission-line-based implementation of this approach, a flexible design that can easily be integrated with current scaled-up, long coherence time superconducting quantum processors.more » « less