skip to main content

Search for: All records

Creators/Authors contains: "Qiao, Yusen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- t BuNO)C 6 H 4 CH 2 ) 3 N] 3− (TriNO x 3− ) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce L III absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce( iv ) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5dmore »hybridization, the d-state distributions vary depending on the bonding motif (CeO vs. CeN) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity.« less
  2. A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals thatmore »were close in energy to the unoccupied Ce 4f orbitals. However, the incorporation of sterically hindered guanidinate ligands inhibited optimal overlaps between Ce 5d and ligand N 2p orbitals. As a result, there was an overall decrease of ligand-to-metal donation and a less stabilized Ce( iv ) oxidation state, while at the same time, more of the donated electron density ended up in the 4f shell. The results indicate that incorporating guanidinate ligands into Ce( iv ) complexes gives rise to intense charge transfer bands and noteworthy electronic structures, providing insights into the stabilization of tetravalent lanthanide oxidation states.« less
  3. The functionalization of methane, ethane, and other alkanes derived from fossil fuels is a central goal in the chemical enterprise. Recently, a photocatalytic system comprising [CeIVCl5(OR)]2−[CeIV, cerium(IV); OR, –OCH3or –OCCl2CH3] was disclosed. The system was reportedly capable of alkane activation by alkoxy radicals (RO•) formed by CeIV–OR bond photolysis. In this work, we present evidence that the reported carbon-hydrogen (C–H) activation of alkanes is instead mediated by the photocatalyst [NEt4]2[CeCl6] (NEt4+, tetraethylammonium), and RO• are not intermediates. Spectroscopic analyses and kinetics were investigated for C–H activation to identify chlorine radical (Cl•) generation as the rate-limiting step. Density functional theory calculations support the formation of [Cl•][alcohol] adducts when alcohols are present, which can manifest a masked RO• character. This result serves as an important cautionary note for interpretation of radical trapping experiments.