skip to main content

Search for: All records

Creators/Authors contains: "Qin, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Reliable subseasonal-to-seasonal (S2S) precipitation prediction is highly desired due to the great socioeconomical implications, yet it remains one of the most challenging topics in the weather/climate prediction research area. As part of the Impact of Initialized Land Temperature and Snowpack on Sub-seasonal to Seasonal Prediction (LS4P) project of the Global Energy and Water Exchanges (GEWEX) program, twenty-one climate models follow the LS4P protocol to quantify the impact of the Tibetan Plateau (TP) land surface temperature/subsurface temperature (LST/SUBT) springtime anomalies on the global summertime precipitation. We find that nudging towards reanalysis winds is crucial for climate models to generate atmosphere and land surface initial conditions close to observations, which is necessary for meaningful S2S applications. Simulations with nudged initial conditions can better capture the summer precipitation responses to the imposed TP LST/SUBT spring anomalies at hotspot regions all over the world. Further analyses show that the enhanced S2S prediction skill is largely attributable to the substantially improved initialization of the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train pattern in the atmosphere. This study highlights the important role that initial condition plays in the S2S prediction and suggests that data assimilation technique (e.g., nudging) should be adopted to initialize climate models to improve their S2S prediction.

    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Finding curable therapies for neurodegenerative disease (ND) is still a worldwide medical and clinical challenge. Recently, investigations have been made into the development of novel therapeutic techniques, and examples include the remote stimulation of nanocarriers to deliver neuroprotective drugs, genes, growth factors, and antibodies using a magnetic field and/or low-power lights. Among these potential nanocarriers, magneto-plasmonic nanoparticles possess obvious advantages, such as the functional restoration of ND models, due to their unique nanostructure and physiochemical properties. In this review, we provide an overview of the latest advances in magneto-plasmonic nanoparticles, and the associated therapeutic approaches to repair and restore brain tissues. We have reviewed their potential as smart nanocarriers, including their unique responsivity under remote magnetic and light stimulation for the controlled and sustained drug delivery for reversing neurodegenerations, as well as the utilization of brain organoids in studying the interaction between NPs and neuronal tissue. This review aims to provide a comprehensive summary of the current progress, opportunities, and challenges of using these smart nanocarriers for programmable therapeutics to treat ND, and predict the mechanism and future directions. 
    more » « less
  4. Abstract

    The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.

    more » « less
  5. Abstract Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface ­temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations. 
    more » « less
  6. Abstract

    The one‐leg, two‐step time discretization proposed by Dahlquist, Liniger and Nevanlinna is second order and variable step G‐stable. G‐stability for systems of ordinary differential equations (ODEs) corrresponds to unconditional, long time energy stability when applied to the Navier–Stokes equations (NSEs). In this report, we analyze the method of Dahlquist, Liniger and Nevanlinna as a variable step, time discretization of the Navier–Stokes equations. We prove that the kinetic energy is bounded for variable time‐steps, show that the method is second‐order accurate, characterize its numerical dissipation and prove error estimates. The theoretical results are illustrated by several numerical tests.

    more » « less
  7. null (Ed.)