skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Qin, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial confinement has been frequently engineered to control the flow and relaxation dynamics of exciton polaritons. While widely investigated in GaAs microcavities, exciton-polariton coupling between discretized polariton modes arising from spatially confined 2D crystals been has been less exhaustively studied. Here, we use coherent 2D photoluminescence-detected micro-spectroscopy to detect oscillating 2D peaks exclusively from a spatial trap in a microcavity with an embedded van-der-Waals heterostructure at room temperature. We observe a wide variation of oscillatory phases as a function of spectral position within the 2D spectrum, which suggests the existence of a coupling between the discretized polariton modes. The latter is accompanied by the generation of coherent phonons. 
    more » « less
  2. Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe 3 ) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (T CDW ), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe 3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. The ion implantation of H+and D+into Ga2O3produces several O–H and O–D centers that have been investigated by vibrational spectroscopy. These defects include the dominant VGa(1)-2H and VGa(1)-2D centers studied previously along with additional defects that can be converted into this structure by thermal annealing. The polarization dependence of the spectra has also been analyzed to determine the directions of the transition moments of the defects and to provide information about defect structure. Our experimental results show that the implantation of H+(or D+) into Ga2O3produces two classes of defects with different polarization properties. Theory finds that these O–H (or O–D) centers are based on two shifted configurations of a Ga(1) vacancy that trap H (or D) atom(s). The interaction of VGa(1)-nD centers with other defects in the implanted samples has also been investigated to help explain the number of O–D lines seen and their reactions upon annealing. Hydrogenated divacancy VGa(1)-VOcenters have been considered as an example. 
    more » « less
  7. null (Ed.)
    Abstract Interlayer excitons in layered materials constitute a novel platform to study many-body phenomena arising from long-range interactions between quantum particles. Long-lived excitons are required to achieve high particle densities, to mediate thermalisation, and to allow for spatially and temporally correlated phases. Additionally, the ability to confine them in periodic arrays is key to building a solid-state analogue to atoms in optical lattices. Here, we demonstrate interlayer excitons with lifetime approaching 0.2 ms in a layered-material heterostructure made from WS 2 and WSe 2 monolayers. We show that interlayer excitons can be localised in an array using a nano-patterned substrate. These confined excitons exhibit microsecond-lifetime, enhanced emission rate, and optical selection rules inherited from the host material. The combination of a permanent dipole, deterministic spatial confinement and long lifetime places interlayer excitons in a regime that satisfies one of the requirements for simulating quantum Ising models in optically resolvable lattices. 
    more » « less