skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiu, Keping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the highest-resolution (~0.04") Atacama Large Millimeter/submillimeter Array 1.3 mm continuum observations so far of three massive star-forming clumps in the Central Molecular Zone (CMZ), namely 20 km/s C1, 20 km/sC4, and Sgr C C4, which reveal prevalent compact millimeter emission. We extract the compact emission with astrodendro and identify a total of 199 fragments with a typical size of ∼370 au, which represent the first sample of candidates of protostellar envelopes and disks and kernels of prestellar cores in these clumps that are likely forming star clusters. Compared with the protoclusters in the Galactic disk, the three protoclusters display a higher level of hierarchical clustering, likely a result of the stronger turbulence in the CMZ clumps. Compared with the mini-starbursts in the CMZ, Sgr B2 M and N, the three protoclusters also show stronger subclustering in conjunction with a lack of massive fragments. The efficiency of high-mass star formation of the three protoclusters is on average 1 order of magnitude lower than that of Sgr B2 M and N, despite a similar overall efficiency of converting gas into stars. The lower efficiency of high-mass star formation in the three protoclusters is likely attributed to hierarchical cluster formation. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026
  2. Abstract We report the first arcsecond-resolution observations of the magnetic field in the ministarburst complex Sgr B2. SMA polarization observations revealed magnetic field morphology in three dense cores of Sgr B2 N(orth), M(ain), and S(outh). The total plane-of-sky magnetic field strengths in these cores are estimated to be 4.3–10.0 mG, 6.2–14.7 mG, and 1.9–4.5 mG derived from the angular dispersion function method after applying the correction factors of 0.21 and 0.5. Combining with analyses of the parsec-scale polarization data from Stratospheric Observatory for Infrared Astronomy, we found that a magnetically supercritical condition is present from the cloud scale (∼10 pc) to core scale (∼0.2 pc) in Sgr B2, which is consistent with the burst of star formation activities in the region likely resulting from a multiscale gravitational collapse from the cloud to dense cores. 
    more » « less
  3. The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5–4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5σlevel. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Abstract We have comprehensively studied the multiscale physical properties of the massive infrared dark cloud G28.34 (the Dragon cloud) with dust polarization and molecular line data from Planck, FCRAO-14 m, James Clerk Maxwell Telescope, and Atacama Large Millimeter/submillimeter Array. We find that the averaged magnetic fields of clumps tend to be either parallel with or perpendicular to the cloud-scale magnetic fields, while the cores in clump MM4 tend to have magnetic fields aligned with the clump fields. Implementing the relative orientation analysis (for magnetic fields, column density gradients, and local gravity), velocity gradient technique, and modified Davis–Chandrasekhar–Fermi analysis, we find that G28.34 is located in a trans-to-sub-Alfvénic environment; the magnetic field is effectively resisting gravitational collapse in large-scale diffuse gas, but is distorted by gravity within the cloud and affected by star formation activities in high-density regions, and the normalized mass-to-flux ratio tends to increase with increasing density and decreasing radius. Considering the thermal, magnetic, and turbulent supports, we find that the environmental gas of G28.34 is in a supervirial (supported) state, the infrared dark clumps may be in a near-equilibrium state, and core MM4-core4 is in a subvirial (gravity-dominant) state. In summary, we suggest that magnetic fields dominate gravity and turbulence in the cloud environment at large scales, resulting in relatively slow cloud formation and evolution processes. Within the cloud, gravity could overwhelm both magnetic fields and turbulence, allowing local dynamical star formation to happen. 
    more » « less
  5. Abstract We use molecular line data from the Atacama Large Millimeter/submillimeter Array, Submillimeter Array, James Clerk Maxwell Telescope, and NANTEN2 to study the multiscale (∼15–0.005 pc) velocity statistics in the massive star formation region NGC 6334. We find that the nonthermal motions revealed by the velocity dispersion function (VDF) stay supersonic over scales of several orders of magnitude. The multiscale nonthermal motions revealed by different instruments do not follow the same continuous power law, which is because the massive star formation activities near central young stellar objects have increased the nonthermal motions in small-scale and high-density regions. The magnitudes of VDFs vary in different gas materials at the same scale, where the infrared dark clump N6334S in an early evolutionary stage shows a lower level of nonthermal motions than other more evolved clumps due to its more quiescent star formation activity. We find possible signs of small-scale-driven (e.g., by gravitational accretion or outflows) supersonic turbulence in clump N6334IV with a three-point VDF analysis. Our results clearly show that the scaling relation of velocity fields in NGC 6334 deviates from a continuous and universal turbulence cascade due to massive star formation activities. 
    more » « less
  6. Abstract We present ALMA dust polarization and molecular line observations toward four clumps (I(N), I, IV, and V) in the massive star-forming region NGC 6334. In conjunction with large-scale dust polarization and molecular line data from JCMT, Planck, and NANTEN2, we make a synergistic analysis of relative orientations between magnetic fields (θB), column density gradients (θNG), local gravity (θLG), and velocity gradients (θVG) to investigate the multi-scale (from ∼30 to 0.003 pc) physical properties in NGC 6334. We find that the relative orientation betweenθBandθNGchanges from statistically more perpendicular to parallel as column density ( N H 2 ) increases, which is a signature of trans-to-sub-Alfvénic turbulence at complex/cloud scales as revealed by previous numerical studies. BecauseθNGandθLGare preferentially aligned within the NGC 6334 cloud, we suggest that the more parallel alignment betweenθBandθNGat higher N H 2 is because the magnetic field line is dragged by gravity. At even higher N H 2 , the angle betweenθBandθNGorθLGtransits back to having no preferred orientation, or statistically slightly more perpendicular, suggesting that the magnetic field structure is impacted by star formation activities. A statistically more perpendicular alignment is found betweenθBandθVGthroughout our studied N H 2 range, which indicates a trans-to-sub-Alfvénic state at small scales as well, and this signifies that magnetic field has an important role in the star formation process in NGC 6334. The normalized mass-to-flux ratio derived from the polarization-intensity gradient (KTH) method increases with N H 2 , but the KTH method may fail at high N H 2 due to the impact of star formation feedback. 
    more » « less
  7. null (Ed.)