- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Guilleminot, Johann (1)
-
Quek, Ariana (1)
-
Yi_Yong, Jin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Approximating Fracture Paths in Random Heterogeneous Materials: A Probabilistic Learning PerspectiveApproximation frameworks for phase-field models of brittle fracture are presented and compared in this work. Such methods aim to address the computational cost associated with conducting full-scale simulations of brittle fracture in heterogeneous materials where material parameters, such as fracture toughness, can vary spatially. They proceed by combining a dimension reduction with learning between function spaces. Two classes of approximations are considered. In the first class, deep learning models are used to perform regression in ad hoc latent spaces. PCA-Net and Fourier neural operators are specifically presented for the sake of comparison. In the second class of techniques, statistical sampling is used to approximate the forward map in latent space, using conditioning. To ensure proper measure concentration, a reduced-order Hamiltonian Monte Carlo technique (namely, probabilistic learning on manifold) is employed. The accuracy of these methods is then investigated on a proxy application where the fracture toughness is modeled as a non-Gaussian random field. It is shown that the probabilistic framework achieves comparable performance in the 𝐿2 sense while enabling the end-user to bypass the art of defining and training deep learning models.more » « less
An official website of the United States government
