skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximating Fracture Paths in Random Heterogeneous Materials: A Probabilistic Learning Perspective
Approximation frameworks for phase-field models of brittle fracture are presented and compared in this work. Such methods aim to address the computational cost associated with conducting full-scale simulations of brittle fracture in heterogeneous materials where material parameters, such as fracture toughness, can vary spatially. They proceed by combining a dimension reduction with learning between function spaces. Two classes of approximations are considered. In the first class, deep learning models are used to perform regression in ad hoc latent spaces. PCA-Net and Fourier neural operators are specifically presented for the sake of comparison. In the second class of techniques, statistical sampling is used to approximate the forward map in latent space, using conditioning. To ensure proper measure concentration, a reduced-order Hamiltonian Monte Carlo technique (namely, probabilistic learning on manifold) is employed. The accuracy of these methods is then investigated on a proxy application where the fracture toughness is modeled as a non-Gaussian random field. It is shown that the probabilistic framework achieves comparable performance in the 𝐿2 sense while enabling the end-user to bypass the art of defining and training deep learning models.  more » « less
Award ID(s):
2022040
PAR ID:
10539884
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Engineering Mechanics
Volume:
150
Issue:
8
ISSN:
0733-9399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fracture in rock as a heterogeneous brittle material, having significant inherent randomness, requires including probabilistic considerations at different scales. Crack growth in rocks is generally associated with complex features such as crack path oscillations, microcrack and crack branching events. Two methods will be presented to address rock inhomogeneity and anisotropy. First, microcracks are explicitly realized in a domain based on specific statistics of crack length and location. Second, a statistical model is used to implicitly represent an inhomogeneous field for fracture strength. Both approaches can be used for rocks in which the natural fractures are oriented in a specific angle, i.e. an aspect for modeling bedding planes in sedimentary rocks. 
    more » « less
  2. Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale. 
    more » « less
  3. The microstructural design has an essential effect on the fracture response of brittle materials. We present a stochastic bulk damage formulation to model dynamic brittle fracture. This model is compared with a similar interfacial model for homogeneous and heterogeneous materials. The damage models are rate-dependent, and the corresponding damage evolution includes delay effects. The delay effect provides mesh objectivity with much less computational efforts. A stochastic field is defined for material cohesion and fracture strength to involve microstructure effects in the proposed formulations. The statistical fields are constructed through the Karhunen-Loeve (KL) method. An advanced asynchronous Spacetime Discontinuous Galerkin (aSDG) method is used to discretize the final system of coupled equations. Application of the presented formulation is shown through dynamic fracture simulation of rock under a uniaxial compressive load. The final results show that a stochastic bulk damage model produces more realistic results in comparison with a homogenizes model. 
    more » « less
  4. Abstract The current study confirms that modified carbon fiber reinforced polymer (CFRP) composites have higher fracture toughness than unmodified CFRP composites achieved by exploiting the synergistic effect of a polycarbonate (PC)/acrylonitrile butadiene styrene (ABS) blend in toughening the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The CFRP composite specimens are tested at near cryogenic temperatures using TMA, DMA, and microcrack analysis to determine the best‐suited concentration of ABS in the PC/ABS blend. TMA and DMA results, as well as microcrack analysis at cryogenic temperatures (CT), confirm that the blend 90/10 is effective in reducing the brittle nature of DGEBA resin and increasing bond strength, resulting in the fracture toughness enhancement of CFRP specimens at CT. Further investigation of 90/10 modified CFRP (90/10 m‐CFRP) and unmodified CFRP specimens using Mode II fracture using ENF test and SEM analysis reveal significant reduction in brittle characteristics of matrix with increase in elongation at failure and fracture surface morphologies confirm nano web‐like structures bridging the CF layers, proving to improve fiber/matrix bond strength. This study concludes the effectiveness of hybrid PC/ABS blend in synergistically‐modifying DGEBA resin for improved fracture toughness of CFRP laminates across a wide temperature range (−150°C to 150°C). 
    more » « less
  5. We have developed an image-based convolutional neural network that is applicable for quantitative time-resolved measurements of the fragmentation behavior of opaque brittle materials using ultra-high speed optical imaging. This model extends previous work on the U-net model. Here we trained binary-, three-, and five-class models using supervised learning on experimentally measured dynamic fracture experiments on various opaque structural ceramic materials that were adhered on transparent polymer (polycarbonate or acrylic) backing materials. Full details of the experimental investigations are outside the scope of this manuscript, but briefly, several different ceramics were loaded using spatially and time-varying mechanical loads to induce inelastic deformation and fracture processes that were recorded at frequencies as high as 5 MHz using high-speed optical imaging. These experiments provided a rich and diverse dataset that includes many of the common fracture modes found in static and dynamic fractures, including cone cracking, median cracking, comminution, and combined complex failure modes that involve effectively simultaneous activation and propagation of multiple fragmentation modes. While the training data presented here were obtained from dynamic fragmentation experiments, this study is applicable to static loading of these materials as the crack speeds are on the order of 1–10 km/s regardless of the loading rate. We believe the methodologies presented here will be useful in quantifying the failure processes in structural materials for protection applications and can be used for direct validation of engineering models used in design. 
    more » « less