skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quinn, Caitlin M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Geopolymers, a class of alkali‐activated binders, are studied as sustainable alternatives to Ordinary Portland Cement due to their potential for CO2emission reduction. However, the critical relationship between early‐age reaction kinetics, the development of material properties, and evolving chemical structure remains insufficiently explored, primarily because of the complexity of the underlying chemical reactions and the wide variety of geopolymer chemistries. To address this, we investigate the mechanism of early‐age (<72 h) strength development of a model metakaolin geopolymer by measuring curing kinetics using isothermal calorimetry, material property development via rheology, and chemical coordination at distinct extents of reaction via29Si and27Al NMR. A novel approach of collecting solid‐state29Si and27Al NMR spectra at low temperature (−17°C) successfully quenches the geopolymer reaction, allowing for spectrum collection at a desired extent of reaction despite long29Si NMR spectrum collection times. Applying the Avrami kinetic model to deconvoluted calorimetry data enables independent analysis of dissolution and polycondensation/crosslinking reactions. From these data, the gel reaction product mass fraction is estimated, revealing an exponential relationship with the storage modulus in the activated metakaolin slurry. This study provides new insights into the interconnected dynamics of molecular chemistry, reaction kinetics, rheology, and strength development, offering a semi‐empirical framework for understanding property evolution in geopolymers more broadly. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available November 6, 2025
  4. Despite the importance of proline conformational equilibria (trans versus cis amide, exo versus endo ring pucker) on protein structure and function, there is a lack of convenient ways to probe proline conformation. 4,4-Difluoroproline (Dfp) was identified to be a sensitive 19F NMR-based probe of proline conformational biases and of cis-trans isomerism. Within model compounds and disordered peptides, the diastereotopic fluorines of Dfp exhibit similar chemical shifts (FF = 0–3 ppm) when a trans X–Dfp amide bond is present. In contrast, the diastereotopic fluorines exhibit a large (FF = 5–12 ppm) difference in chemical shift in a cis X–Dfp prolyl amide bond. DFT calculations, X-ray crystallography, and solid-state NMR spectroscopy indicated that the FF directly reports on the relative preference of one proline ring pucker over the other: a fluorine which is pseudo-axial (i.e. the pro-4R-F in an exo ring pucker, or the pro-4S-F in an endo ring pucker) is downfield, while a fluorine which is pseudo-equatorial (i.e. pro-4S-F when exo, or pro-4R-F when endo) is upfield. Thus, when a proline is disordered (a mixture of exo and endo ring puckers, as at trans-Pro in peptides in water), it exhibits a small . In contrast, when the Pro is ordered (i.e. when one ring pucker is strongly preferred, as in cis-Pro amide bonds, where the endo ring pucker is strongly favored), a large  is observed. Dfp can be used to identify inherent induced order in peptides and to quantify proline cis-trans isomerism. Using Dfp, we discovered that the stable polyproline II helix (PPII) formed in the denatured state (8 M urea) exhibits essentially equal populations of the exo and endo proline ring puckers. In addition, the data with Dfp suggested the specific stabilization of PPII by water over other polar solvents. These data strongly support the importance of carbonyl solvation and n* interactions for the stabilization of PPII. Dfp was also employed to quantify proline cis-trans isomerism as a function of phosphorylation and the R406W mutation in peptides derived from the intrinsically disordered protein tau. Dfp is minimally sterically disruptive and can be incorporated in expressed proteins, suggesting its broad application in understanding proline cis-trans isomerization, protein folding, and local order in intrinsically disordered proteins. 
    more » « less
  5. null (Ed.)
  6. Abstract Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2activation occurs heterolytically, leading to a hydride on Ru, an H+on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance. 
    more » « less