skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts
Abstract Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2activation occurs heterolytically, leading to a hydride on Ru, an H+on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.  more » « less
Award ID(s):
1720530
PAR ID:
10370565
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The combined effects of compact TiO2(c‐TiO2) electron‐transport layer (ETL) are investigated without and with mesoscopic TiO2(m‐TiO2) on top, and without and with an iodine‐terminated silane self‐assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational‐stability of solar cells based on metal‐halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c‐TiO2without SAM to m‐TiO2with SAM. This is attributed to the synergistic effect of the m‐TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine‐terminated silane SAM. The combination of m‐TiO2and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power‐conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2active areas, respectively. These PSCs also have exceptionally long operational‐stability lives: extrapolatedT80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2active areas, respectively.Postmortemcharacterization and analyses of the operational‐stability‐tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational‐stability. 
    more » « less
  2. Abstract The synthesis, characterization, and redox behavior of aryloxide complexes containing an increasing number of internal hydrogen bonds (OEP)Ru(NO)(OArxH) (OEP=octaethylporphyrinato dianion; x=0, 1, 2) are reported. These nitrosyl aryloxide compounds were characterized by X‐ray crystallography, IR and1H NMR spectroscopy. The IR spectra displayed υNOfrequencies in the 1823–1843 cm−1range with compounds possessing more internal hydrogen bonds demonstrating higher υNOfrequencies due to diminished π‐backdonation to the Ru−NO fragment. Comparison of the distinct υNHand δN−Hsignals in the IR and1H NMR spectra of the free and complexed OAr1H/OAr2Hligands support the notion of additional electron density being removed via intramolecular hydrogen bonding. Results of DFT calculations on the (porphine)Ru(NO)(OArxH) models (porphine=unsubstituted porphyrin) reveal that the HOMOs of these complexes have significant axial ligand contributions, whereas the HOMOs of the five‐coordinate [(porphine)RuNO)]+cation resides mostly on the equatorial porphyrin macrocycle. The electrochemical results of these (OEP)Ru(NO)(OArxH) complexes in CH2Cl2reveal first oxidations that occur at increasingly positive potentials when more internal hydrogen bonds are present. Based on the DFT and preliminary IR spectroelectrochemical results, we propose that the electrooxidations result in eventual dissociation of the axial aryloxide ligands. 
    more » « less
  3. Abstract We demonstrate a novel approach of utilizing methanol (CH3OH) in a dual role for (1) the methanolysis of polyethylene terephthalate (PET) to form dimethyl terephthalate (DMT) at near‐quantitative yields (~97 %) and (2) serving as an in situ H2source for the catalytic transfer hydrogenolysis (CTH) of DMT to p‐xylene (PX, ~63 % at 240 °C and 16 h) on a reducible ZnZrOxsupported Cu catalyst (i.e., Cu/ZnZrOx). Pre‐ and post‐reaction surface and bulk characterization, along with density functional theory (DFT) computations, explicate the dual role of the metal‐support interface of Cu/ZnZrOxin activating both CH3OH and DMT and facilitating a lower free‐energy pathway for both CH3OH dehydrogenation and DMT hydrogenolysis, compared to Cu supported on a redox‐neutral SiO2support. Loading studies and thermodynamic calculations showed that, under reaction conditions, CH3OH in the gas phase, rather than in the liquid phase, is critical for CTH of DMT. Interestingly, the Cu/ZnZrOxcatalyst was also effective for the methanolysis and hydrogenolysis of C−C bonds (compared to C−O bonds for PET) of waste polycarbonate (PC), largely forming xylenol (~38 %) and methyl isopropyl anisole (~42 %) demonstrating the versatility of this approach toward valorizing a wide range of condensation polymers. 
    more » « less
  4. Abstract Catalytic water oxidation is an important process for the development of clean energy solutions and energy storage. Despite the significant number of reports on active catalysts, systematic control of the catalytic activity remains elusive. In this study, descriptors are explored that can be correlated with catalytic activity. [Ru(tpy)(pic)2(H2O)](NO3)2and [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2(where tpy=2,2′ : 6′,2“‐terpyridine, EtO‐tpy=4′‐(ethoxy)‐2,2′:6′,2”‐terpyridine, pic=4‐picoline) are synthesized and characterized by NMR, UV/Vis, EPR, resonance Raman, and X‐ray absorption spectroscopy, and electrochemical analysis. Addition of the ethoxy group increases the catalytic activity in chemically driven and photocatalytic water oxidation. Thus, the effect of the electron‐donating group known for the [Ru(tpy)(bpy)(H2O)]2+family is transferable to architectures with a tpy ligandtransto the Ru‐oxo unit. Under catalytic conditions, [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2displays new spectroscopic signals tentatively assigned to a peroxo intermediate. Reaction pathways were analyzed by using DFT calculations. [Ru(EtO‐tpy)(pic)2(H2O)](NO3)2is found to be one of the most active catalysts functioning by a water nucleophilic attack mechanism. 
    more » « less
  5. Abstract Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration. 
    more » « less