skip to main content


Title: Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts
Abstract

Ruthenium (Ru) is the one of the most promising catalysts for polyolefin hydrogenolysis. Its performance varies widely with the support, but the reasons remain unknown. Here, we introduce a simple synthetic strategy (using ammonia as a modulator) to tune metal-support interactions and apply it to Ru deposited on titania (TiO2). We demonstrate that combining deuterium nuclear magnetic resonance spectroscopy with temperature variation and density functional theory can reveal the complex nature, binding strength, and H amount. H2activation occurs heterolytically, leading to a hydride on Ru, an H+on the nearest oxygen, and a partially positively charged Ru. This leads to partial reduction of TiO2and high coverages of H for spillover, showcasing a threefold increase in hydrogenolysis rates. This result points to the key role of the surface hydrogen coverage in improving hydrogenolysis catalyst performance.

 
more » « less
Award ID(s):
1720530
NSF-PAR ID:
10370565
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lignin is a by‐product of biorefineries and pulp and paper manufacturers. Lignin is a renewable source of phenolic precursors for fuels and chemicals. Hydrogenolysis of lignin cleaves the abundant β‐O‐4 bonds and releases phenolics. However, selective hydrogenolysis of lignin's β‐O‐4 bonds is challenging because it requires high‐pressure H2. Here we show efficient hydrogenolysis of lignin model compounds and technical lignin by Ru/C catalyst and internal hydrogen. The aliphatic hydroxyl groups (Cα−OH) in lignin enabled Ru‐catalyzed dehydrogenation of internal hydrogen and the formation of reactive keto intermediate, which facilitated the β‐O‐4 cleavage into phenolic monomers. Furthermore, solvents that had a high donor number (Lewis basicity) enhanced the yield of phenolic monomers, equal to 27.9 wt.% from technical lignin. These findings offer a novel approach for biorefineries to design lignin isolation processes and/or solvent systems to maximize phenolic monomers and to control product selectivity/stability.

     
    more » « less
  2. Abstract

    The availability of durable, high‐performance electrocatalysts for the hydrogen oxidation reaction (HOR) is currently a constraint for anion‐exchange membrane fuel cells (AEMFCs). Herein, a rapid microwave‐assisted synthesis method is used to develop a core–shell catalyst support based on a hydrogenated TiO2/carbon for PtRu nanoparticles (NPs). The hydrogenated TiO2provides a strong metal‐support interaction with the PtRu NPs, which improves the catalyst's oxophilicity and HOR activity compared to commercial PtRu/C and enables greater size control of the catalyst NPs. The as‐synthesized PtRu/TiO2/C‐400 electrocatalyst exhibits respectable performance in an AEMFC operated at 80 °C, yielding the highest current density (up to 3× higher) within the catalytic region (compared at 0.80–0.90 V) and voltage efficiency (68%@ 0.5 A cm−2) values in the compared literature. In addition, the cell demonstrates promising short‐term voltage stability with a minor voltage decay of 1.5 mV h−1. This “first‐of‐its‐kind in alkaline” work may open further research avenues to develop rapid synthesis methods to prepare advanced core–shell metal‐oxide/carbon supports for electrocatalysts for use in the next‐generation of AEMFCs with potential applicability to the broader electrochemical systems research community.

     
    more » « less
  3. Abstract

    In order to identify the potential reaction paths of C2H4and their product distribution in Fischer‐Tropsch synthesis (FTS), a series of experiments were designed over a Co/TiO2catalyst in the absence of CO. C2H4did quickly react with H2to produce C1‐6products under Fischer‐Tropsch (FT) reaction conditions. Although the dominant reaction is C2H4hydrogenation to ethane, changing the reaction conditions (temperature and partial pressure of reactants) can lead to the other reaction pathways being enhanced, resulting in varying product selectivity to both linear and branch olefins and paraffins. Possible reaction pathways had been summarized and discussed, which including C2H4reaction to ethylidene followed by dimerization; C2H4insertion into C2surface species and dimerization and C4decomposition and/or direct C2hydrogenolysis. Furthermore, the products obtained from C2H4reactions were fit to a typical FTS product distribution, which indicate that both the chain growth initiators and monomers are not necessarily only derived from hydrogenation of CO but also from the secondary reactions of olefins.

     
    more » « less
  4. Abstract

    Polyolefins comprise a major fraction of single-use plastics, yet their catalytic deconstruction/recycling has proven challenging due to their inert saturated hydrocarbon connectivities. Here a very electrophilic, formally cationic earth-abundant single-site organozirconium catalyst chemisorbed on a highly Brønsted acidic sulfated alumina support and characterized by a broad array of experimental and theoretical techniques, is shown to mediate the rapid hydrogenolytic cleavage of molecular and macromolecular saturated hydrocarbons under mild conditions, with catalytic onset as low as 90 °C/0.5 atm H2with 0.02 mol% catalyst loading. For polyethylene, quantitative hydrogenolysis to light hydrocarbons proceeds within 48 min with an activity of > 4000 mol(CH2units)·mol(Zr)−1·h−1at 200 °C/2 atm H2pressure. Under similar solventless conditions, polyethylene-co−1-octene, isotactic polypropylene, and a post-consumer food container cap are rapidly hydrogenolyzed to low molecular mass hydrocarbons. Regarding mechanism, theory and experiment identify a turnover-limiting C-C scission pathway involvingß-alkyl transfer rather than the more common σ-bond metathesis.

     
    more » « less
  5. Abstract

    The novel electrophilic organo‐tantalum catalyst AlS/TaNpx(1) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3Ta=CHtBu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst1is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge,1exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2units) ⋅ mol(Ta)−1 ⋅ h−1at 200 °C/17 atm H2) reported to date in the peer‐reviewed literature. Unlike the AlS/ZrNp2analog, the Ta catalyst is more thermally stable and offers multiple potential C−C bond activation pathways. For hydrogenolysis, AlS/TaNpxis effective for a wide variety of pre‐ and post‐consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.

     
    more » « less