skip to main content


Search for: All records

Creators/Authors contains: "Rabinovich, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We propose a new traceroute tool, FlashRoute for efficient large-scale topology discovery. FlashRoute reduces the time required for tracerouting the entire /24 IPv4 address space by a factor of three and half compared to previous state of the art. Additionally, we present a new technique to measure hop-distance to a destination using a single probe and uncover a bias of the influential ISI Census hitlist [18] in topology discovery. 
    more » « less
  2. Content delivery networks (CDNs) commonly use DNS to map end-users to the best edge servers. A recently proposed EDNS0-Client-Subnet (ECS) extension allows recursive resolvers to include end-user subnet information in DNS queries, so that authoritative DNS servers, especially those belonging to CDNs, could use this information to improve user mapping. In this paper, we study the ECS behavior of ECS-enabled recursive resolvers from the perspectives of the opposite sides of a DNS interaction, the authoritative DNS servers of a major CDN and a busy DNS resolution service. We find a range of erroneous (i.e., deviating from the protocol specification) and detrimental (even if compliant) behaviors that may unnecessarily erode client privacy, reduce the effectiveness of DNS caching, diminish ECS benefits, and in some cases turn ECS from facilitator into an obstacle to authoritative DNS servers' ability to optimize user-to-edge-server mappings. 
    more » « less
  3. The advent of ultrabroadband Internet connectivity brings a 2-3 orders of magnitude jump in the capacity of access networks (a.k.a. the “last mile”). Beyond mere capacity increase, this leap represents a qualitative shift in the overall Internet environment. Therefore, we argue that only by seizing the opportunity to re-think the way we structure network applications and services can we realize the full potential ultrabroadband provides. Specifically, with ultrabroadband residential networks, we have the opportunity to re-center our digital lives around our residence, similar to how our physical lives generally center around our homes. To this end, we introduce a new appliance in home networks–a “home point of presence”–that provides a variety of services to the users in the house regardless of where they are physically located and connected to the network. We illustrate the utility of this appliance by discussing a range of new services that both bring new functionality to the users and improve performance of existing applications. 
    more » « less
  4. It has been long observed that communication between a client and a content server using overlay detours may result in substantially better performance than a native path offered by IP routing. Yet the use of detours has been limited to distributed platforms such as Akamai. This paper poses a question - how can clients practically take advantage of overlay detours without modification to content servers (which are obviously outside clients' control)? We have posited elsewhere that the emergence of gigabit-to-the-home access networks would precipitate a new home network appliance, which would maintain permanent presence on the Internet for the users and have general computing and storage capabilities. Given such an appliance, our vision is that Internet users may form cooperatives in which members agree to serve as waypoints points to each other to improve each other's Internet experience. To make detours transparent to the server, we leverage MPTCP, which normally allows a device to communicate with the server on several network interfaces in parallel but we use it to communicate through external waypoint hosts. The waypoints then mimic MPTCP's subflows to the server, making the server oblivious to the overlay detours as long as it supports MPTCP. 
    more » « less
  5. Authoritative DNS servers are susceptible to being leveraged in denial of service attacks in which the attacker sends DNS queries while masquerading as a victim---and hence causing the DNS server to send the responses to the victim. This reflection off innocent DNS servers hides the attackers identity and often allows the attackers to amplify their traffic by employing small requests to elicit large responses. Several challenge-response techniques have been proposed to establish a requester's identity before sending a full answer. However, none of these are practical in that they do not work in the face of ``resolver pools''---or groups of DNS resolvers that work in concert to lookup records in the DNS. In these cases a challenge transmitted to some resolver $R_1$ may be handled by a resolver $R_2$, hence leaving an authoritative DNS server wondering whether $R_2$ is in fact another resolver in the pool or a victim. We offer a practical challenge-response mechanism that uses challenge chains to establish identity in the face of resolver pools. We illustrate that the practical cost of our scheme in terms of added delay is small. 
    more » « less
  6. Today's websites achieve scalability by either deploying their own platforms with sufficient spare capacity or signing up for services from a content delivery network (CDN). This paper investigates another alternative, where a website directly recruits Internet users to contribute their resources to help deliver the site's content. We show that this alternative, which we call NoCDN, can be implemented securely, transparently to the users accessing the site, and without changes to the content itself. 
    more » « less