skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Race, Joseph T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 22, 2025
  2. Hybrid n = 1 Ruddlesden-Popper perovskites with aromatic ammonium cations like benzylammonium (BzA) and phenethylammonium (PEA) have been shown to adopt polar structures and exhibit ferroelectricity, but many of the examples discovered thus far contain either Pb or Cd. Here, we describe the synthesis and structural characteriza-tion of four layered halide double perovskites: (BzA)4AgBiBr8, (PEA)4AgBiBr8, (BzA)4AgInCl8, and (PEA)4AgInCl8. In all four compounds the inorganic layers exhibit a chessboard ordering of Ag+ and Bi3+/In3+ and the layers stack in a coherent pattern that maintains the ordering over three-dimensional space. The octahedra sur-rounding Ag+ show a large axial compression, which results in much shorter bonds to the terminal halide ions than to the bridging halide ions, whereas the bismuth- and indium-centered octahedra show only small distortions. There appears to be a competition between polar distortions of the octahedra and octahedral tilting, both of which can optimize hydrogen bonding interactions between the ammonium cations and the inorganic layers. Unlike the Pb- or Cd-containing analogs, the double perovskites seem to favor patterns of octahedral tilting that suppress po-lar ordering of the organic cations. The packing of the organic cations depends on both their conformational flexi-bility and the lateral dimensions of the inorganic layer. These forces favor intra-layer edge-to-face interaction be-tween aromatic rings in the three of the four compounds. The lone exception is (PEA)4AgBiBr8, which forms weak inter-layer edge-to-face interactions between aromatic rings and slip-stacked packing within each organic layer. 
    more » « less