skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raczka, Brett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Navigating uncertainty is a critical challenge in all fields of science, especially when translating knowledge into real-world policies or management decisions. However, the wide variance in concepts and definitions of uncertainty across scientific fields hinders effective communication. As a microcosm of diverse fields within Earth Science, NASA’s Carbon Monitoring System (CMS) provides a useful crucible in which to identify cross-cutting concepts of uncertainty. The CMS convened the Uncertainty Working Group (UWG), a group of specialists across disciplines, to evaluate and synthesize efforts to characterize uncertainty in CMS projects. This paper represents efforts by the UWG to build a heuristic framework designed to evaluate data products and communicate uncertainty to both scientific and non-scientific end users. We consider four pillars of uncertainty: origins, severity, stochasticity versus incomplete knowledge, and spatial and temporal autocorrelation. Using a common vocabulary and a generalized workflow, the framework introduces a graphical heuristic accompanied by a narrative, exemplified through contrasting case studies. Envisioned as a versatile tool, this framework provides clarity in reporting uncertainty, guiding users and tempering expectations. Beyond CMS, it stands as a simple yet powerful means to communicate uncertainty across diverse scientific communities. 
    more » « less
  2. Abstract Robust carbon monitoring systems are needed for land managers to assess and mitigate the changing effects of ecosystem stress on western United States forests, where most aboveground carbon is stored in mountainous areas. Atmospheric carbon uptake via gross primary productivity (GPP) is an important indicator of ecosystem function and is particularly relevant to carbon monitoring systems. However, limited ground-based observations in remote areas with complex topography represent a significant challenge for tracking regional-scale GPP. Satellite observations can help bridge these monitoring gaps, but the accuracy of remote sensing methods for inferring GPP is still limited in montane evergreen needleleaf biomes, where (a) photosynthetic activity is largely decoupled from canopy structure and chlorophyll content, and (b) strong heterogeneity in phenology and atmospheric conditions is difficult to resolve in space and time. Using monthly solar-induced chlorophyll fluorescence (SIF) sampled at ∼4 km from the TROPOspheric Monitoring Instrument (TROPOMI), we show that high-resolution satellite-observed SIF followed ecological expectations of seasonal and elevational patterns of GPP across a 3000 m elevation gradient in the Sierra Nevada mountains of California. After accounting for the effects of high reflected radiance in TROPOMI SIF due to snow cover, the seasonal and elevational patterns of SIF were well correlated with GPP estimates from a machine-learning model (FLUXCOM) and a land surface model (CLM5.0-SP), outperforming other spectral vegetation indices. Differences in the seasonality of TROPOMI SIF and GPP estimates were likely attributed to misrepresentation of moisture limitation and winter photosynthetic activity in FLUXCOM and CLM5.0 respectively, as indicated by discrepancies with GPP derived from eddy covariance observations in the southern Sierra Nevada. These results suggest that satellite-observed SIF can serve as a useful diagnostic and constraint to improve upon estimates of GPP toward multiscale carbon monitoring systems in montane, evergreen conifer biomes at regional scales. 
    more » « less
  3. Abstract. The flow of carbon through terrestrial ecosystems and the response toclimate are critical but highly uncertain processes in the global carboncycle. However, with a rapidly expanding array of in situ and satellitedata, there is an opportunity to improve our mechanistic understanding ofthe carbon (C) cycle's response to land use and climate change. Uncertaintyin temperature limitation on productivity poses a significant challenge topredicting the response of ecosystem carbon fluxes to a changing climate.Here we diagnose and quantitatively resolve environmental limitations onthe growing-season onset of gross primary production (GPP) using nearly 2 decades of meteorological and C flux data (2000–2018) at a subalpineevergreen forest in Colorado, USA. We implement the CARbonDAta-MOdel fraMework (CARDAMOM) model–datafusion network to resolve the temperature sensitivity of spring GPP. Tocapture a GPP temperature limitation – a critical component of the integratedsensitivity of GPP to temperature – we introduced a cold-temperature scalingfunction in CARDAMOM to regulate photosynthetic productivity. We found thatGPP was gradually inhibited at temperatures below 6.0 ∘C (±2.6 ∘C) and completely inhibited below −7.1 ∘C(±1.1 ∘C). The addition of this scaling factor improvedthe model's ability to replicate spring GPP at interannual and decadal timescales (r=0.88), relative to the nominal CARDAMOM configuration (r=0.47), and improved spring GPP model predictability outside of the dataassimilation training period (r=0.88). While cold-temperaturelimitation has an important influence on spring GPP, it does not have asignificant impact on integrated growing-season GPP, revealing that otherenvironmental controls, such as precipitation, play a more important role inannual productivity. This study highlights growing-season onset temperatureas a key limiting factor for spring growth in winter-dormant evergreenforests, which is critical in understanding future responses to climatechange. 
    more » « less