Spin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access. In this work, we demonstrate a fiber-based scanning probe that simultaneously couples light into a planar photonic circuit and delivers high power microwaves for driving electron spin transitions. The optical portion achieves 46% one-way coupling efficiency, while the microwave portion supplies an AC magnetic field with strength up to 9 Gauss at 10 Watts of input microwave power. The entire probe can be scanned across a large number of devices inside a3He cryostat without free-space optical access. We demonstrate this technique with silicon nanophotonic circuits coupled to single Er3+ions.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Raha, Mouktik (4)
-
Chen, Songtao (3)
-
Ourari, Salim (3)
-
Phenicie, Christopher M. (2)
-
Thompson, Jeff D. (2)
-
Thompson, Jeff_D (2)
-
Abulnaga, Alex (1)
-
Dibos, Alan M. (1)
-
Huang, Ding (1)
-
Phenicie, Christopher_M (1)
-
Uysal, Mehmet_T (1)
-
Welinski, Sacha (1)
-
de_Leon, Nathalie_P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Raha, Mouktik ; Chen, Songtao ; Phenicie, Christopher M. ; Ourari, Salim ; Dibos, Alan M. ; Thompson, Jeff D. ( , Nature Communications)
-
Huang, Ding ; Abulnaga, Alex ; Welinski, Sacha ; Raha, Mouktik ; Thompson, Jeff_D ; de_Leon, Nathalie_P ( , Optics Express)
Integrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chip, III-V diamond platform designed for neutral silicon vacancy (SiV0) centers in diamond that circumvents the need for etching the diamond substrate. Through evanescent coupling to SiV0centers near the surface of diamond, the platform will enable Purcell enhancement of SiV0emission and efficient frequency conversion to the telecommunication C-band. The proposed structures can be realized with readily available fabrication techniques.
-
Chen, Songtao ; Raha, Mouktik ; Phenicie, Christopher M. ; Ourari, Salim ; Thompson, Jeff D. ( , Science)
Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.