Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present here a characterization of the low background NaI(Tl) crystal NaI-33 based on a period of almost one year of data taking (891 kg$$\times $$ days exposure) in a detector configuration with no use of organic scintillator veto. This remarkably radio-pure crystal already showed a low background in the SABRE Proof-of-Principle (PoP) detector, in the low energy region of interest (1–6 keV) for the search of dark matter interaction via the annual modulation signature. As the vetoable background components, such as$$^{40}$$ K, are here sub-dominant, we reassembled the PoP setup with a fully passive shielding. We upgraded the selection of events based on a Boosted Decision Tree algorithm that rejects most of the PMT-induced noise while retaining scintillation signals with > 90% efficiency in 1–6 keV. We find an average background of 1.39 ± 0.02 counts/day/kg/keV in the region of interest and a spectrum consistent with data previously acquired in the PoP setup, where the external veto background suppression was in place. Our background model indicates that the dominant background component is due to decays of$$^{210}$$ Pb, only partly residing in the crystal itself. The other location of$$^{210}$$ Pb is the reflector foil that wraps the crystal. We now proceed to design the experimental setup for the physics phase of the SABRE North detector, based on an array of similar crystals, using a low radioactivity PTFE reflector and further improving the passive shielding strategy, in compliance with the new safety and environmental requirements of Laboratori Nazionali del Gran Sasso.more » « less
- 
            The dark matter interpretation of the DAMA/LIBRA annual modulation signal represents a long-standing open question in astroparticle physics. The SABRE experiment aims to test such claim, bringing the same detection technique to an unprecedented sensitivity. Based on ultra-low background NaI(Tl) scintillating crystals like DAMA, SABRE features a liquid scintillator Veto system, surrounding the main target, and it will deploy twin detectors: one in the Northern hemisphere at Laboratori Nazionali del Gran Sasso (LNGS), Italy and the other in the Stawell Underground Physics Laboratory (SUPL), Australia, first laboratory of this kind in the Southern hemisphere. The first very-high-purity crystal produced by the collaboration was shipped to LNGS in 2019 for characterization. It features a potassium contamination, measured by mass spectroscopy, of the order of 4 ppb, about three times lower than DAMA/LIBRA crystals. The first phase of the SABRE experiment is a Proof-of-Principle (PoP) detector featuring one crystal and a liquid scintillator Veto, at LNGS. This contribution will present the results of the stand-alone characterization of the first SABRE high-purity crystal, as well as the status of the PoP detector, commissioned early in the summer of 2020.more » « less
- 
            Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π−, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            A<sc>bstract</sc> Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb−1. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is$${\sigma }_{\text{fid}}={74}\pm {11}{\left({\text{stat}}\right)}_{-4}^{+5}\left({\text{syst}}\right)$$fb, in agreement with the standard model prediction of 67.8 ± 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Incoherent photoproduction in heavy ion ultraperipheral collisions (UPCs) provides a sensitive probe of localized, fluctuating gluonic structures within heavy nuclei. This Letter reports the first measurement of the photon-nucleon center-of-mass energy ( ) dependence of this process in PbPb UPCs at a nucleon-nucleon center-of-mass energy of 5.02 TeV, using of data recorded by the CMS experiment. The measurement covers a wide range of , probing gluons carrying a fraction of nucleon momentum down to an unexplored regime of . Compared to baseline predictions neglecting nuclear effects, the measured cross sections exhibit significantly greater suppression at lower . Additionally, the ratio of incoherent to coherent photoproduction is found to be constant across the probed and range, disfavoring the establishment of the black disk limit. This Letter provides critical insights into the -dependent evolution of fluctuating gluonic structures within nuclei and calls for further advancements in theoretical models incorporating nuclear shadowing and gluon saturation.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            A<sc>bstract</sc> A search for the production of a single top quark in association with invisible particles is performed using proton-proton collision data collected with the CMS detector at the LHC at$$\sqrt{s}=13$$TeV, corresponding to an integrated luminosity of 138 fb−1. In this search, a flavor-changing neutral current produces a single top quark or antiquark and an invisible state nonresonantly. The invisible state consists of a hypothetical spin-1 particle acting as a new mediator and decaying to two spin-1/2 dark matter candidates. The analysis searches for events in which the top quark or antiquark decays hadronically. No significant excess of events compatible with that signature is observed. Exclusion limits at 95% confidence level are placed on the masses of the spin-1 mediator and the dark matter candidates, and are compared to constraints from the dark matter relic density measurements. In a vector (axial-vector) coupling scenario, masses of the spin-1 mediator are excluded up to 1.85 (1.85) TeV with an expectation of 2.0 (2.0) TeV, whereas masses of the dark matter candidates are excluded up to 0.75 (0.55) TeV with an expectation of 0.85 (0.65) TeV.more » « lessFree, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
