The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the
Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10271636
- Journal Name:
- The European Physical Journal C
- Volume:
- 81
- Issue:
- 4
- ISSN:
- 1434-6044
- Publisher:
- Springer Science + Business Media
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$ Rn activity concentration of$$^{222}$$ in$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ of xenon. The knowledge of the distribution of the$$3.2\,\mathrm{t}$$ Rn sources allowed us to selectivelymore »$$^{222}$$ -
Abstract We report the identification of metastable isomeric states of
Ac at 6.28 keV, 6.67 keV and 20.19 keV, with lifetimes of an order of 100 ns. These states are produced by the$$^{228}$$ -decay of$$\beta $$ Ra, a component of the$$^{228}$$ Th decay chain, with$$^{232}$$ Q-values of 39.52 keV, 39.13 keV and 25.61 keV, respectively. Due to the low Q-value of$$\beta $$ Ra as well as the relative abundance of$$^{228}$$ Th and their progeny in low background experiments, these observations potentially impact the low-energy background modeling of dark matter search experiments.$$^{232}$$ -
Abstract We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$ in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ m by adjusting themore »$$\upmu$$ -
Abstract Massive gully land consolidation projects, launched in China’s Loess Plateau, aim to restore 2667
agricultural lands in total by consolidating 2026 highly eroded gullies. This effort represents a social engineering project where the economic development and livelihood of the farming families are closely tied to the ability of these emergent landscapes to provide agricultural services. Whether these ‘time zero’ landscapes have the resilience to provide a sustainable soil condition such as soil organic carbon (SOC) content remains unknown. By studying two watersheds, one of which is a control site, we show that the consolidated gully serves as an enhanced carbonmore »$$\mathrm{km}^2$$ -
Abstract Hemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers
. Fluid drag is conceptualized via a critical Reynolds number:$${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$ , where$${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$ v 0corresponds to the maximum wetting speed on a flat, dry surface andx 0is the extension length of the liquidmore »