skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rahimian, Hamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Feng, B.; Pedrielli, G; Peng, Y.; Shashaani, S.; Song, E.; Corlu, C.; Lee, L.; Chew, E.; Roeder, T.; Lendermann, P. (Ed.)
    Ranking & selection (R&S) procedures are simulation-optimization algorithms for making one-time decisions among a finite set of alternative system designs or feasible solutions with a statistical assurance of a good selection. R&S with covariates (R&S+C) extends the paradigm to allow the optimal selection to depend on contextual information that is obtained just prior to the need for a decision. The dominant approach for solving such problems is to employ offline simulation to create metamodels that predict the performance of each system or feasible solution as a function of the covariate. This paper introduces a fundamentally different approach that solves individual R&S problems offline for various values of the covariate, and then treats the real-time decision as a classification problem: given the covariate information, which system is a good solution? Our approach exploits the availability of efficient R&S procedures, requires milder assumptions than the metamodeling paradigm to provide strong guarantees, and can be more efficient. 
    more » « less
  2. Abstract We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk‐averse condition. The model is applied to study the allocation of ventilator inventory in the COVID‐19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non‐COVID‐19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non‐COVID‐19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top‐most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst‐case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk‐aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp‐up consideration can be based on a cost‐benefit analysis. 
    more » « less