skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rahman, Mafruda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this paper we present a study of distribution polarization doped AlxGa1−xN layers and their use in quasi-vertical configuration pn-diodes which exhibited a high breakdown field of ∼8.5 MV cm−1and a large forward current density (∼23 kA cm−2). We also establish their potential use in UVC light emitters by studying the optical emission from a quantum well inserted at the distribution polarization doped pn-junction interface. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. ABSTRACT IntroductionCurrent wearables that collect heart rate and acceleration were not designed for children and/or do not allow access to raw signals, making them fundamentally unverifiable. This study describes the creation and calibration of an open-source multichannel platform (PATCH) designed to measure heart rate and acceleration in children ages 3–8 yr. MethodsChildren (N = 63; mean age, 6.3 yr) participated in a 45-min protocol ranging in intensities from sedentary to vigorous activity. Actiheart-5 was used as a comparison measure. We calculated mean bias, mean absolute error (MAE) mean absolute percent error (MA%E), Pearson correlations, and Lin’s concordance correlation coefficient (CCC). ResultsMean bias between PATCH and Actiheart heart rate was 2.26 bpm, MAE was 6.67 bpm, and M%E was 5.99%. The correlation between PATCH and Actiheart heart rate was 0.89, and CCC was 0.88. For acceleration, mean bias was 1.16 mg and MAE was 12.24 mg. The correlation between PATCH and Actiheart was 0.96, and CCC was 0.95. ConclusionsThe PATCH demonstrated clinically acceptable accuracies to measure heart rate and acceleration compared with a research-grade device. 
    more » « less