skip to main content


Search for: All records

Creators/Authors contains: "Rahman, Md Mostafizur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dr P. Vincenzini (Ed.)
  2. The field of DevOps security education necessitates innovative approaches to effectively address the ever evolving challenges of cybersecurity. Adopting a student-centered approach, there is the need for the design and development of a comprehensive set of hands-on learning modules. In this paper, we introduce hands-on learning modules that enable learners to be familiar with identifying known security weaknesses, based on taint tracking to accurately pinpoint vulnerable code. To cultivate an engaging and motivating learning environment, our hands-on approach includes a pre-lab, hands-on and post-lab sections. They all provide introduction to specific DevOps topics and software security problems at hand, followed by practicing with real world code examples having security issues to detect them using tools. The initial evaluation results from a number of courses across multiple schools show that the hands-on modules are enhancing the interests among students on software security and cybersecurity, while preparing them to address DevOps security vulnerabilities. 
    more » « less
  3. This survey paper provides an overview of the current state of Artificial Intelligence (AI) attacks and risks for AI security and privacy as artificial intelligence becomes more prevalent in various applications and services. The risks associated with AI attacks and security breaches are becoming increasingly apparent and cause many financial and social losses. This paper will categorize the different types of attacks on AI models, including adversarial attacks, model inversion attacks, poisoning attacks, data poisoning attacks, data extraction attacks, and membership inference attacks. The paper also emphasizes the importance of developing secure and robust AI models to ensure the privacy and security of sensitive data. Through a systematic literature review, this survey paper comprehensively analyzes the current state of AI attacks and risks for AI security and privacy and detection techniques. 
    more » « less