skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rahnavard, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metagenomics has revolutionized our understanding of microbial communities, offering unprecedented insights into their genetic and functional diversity across Earth’s diverse ecosystems. Beyond their roles as environmental constituents, microbiomes act as symbionts, profoundly influencing the health and function of their host organisms. Given the inherent complexity of these communities and the diverse environments where they reside, the components of a metagenomics study must be carefully tailored to yield accurate results that are representative of the populations of interest. This Primer examines the methodological advancements and current practices that have shaped the field, from initial stages of sample collection and DNA extraction to the advanced bioinformatics tools employed for data analysis, with a particular focus on the profound impact of next-generation sequencing on the scale and accuracy of metagenomics studies. We critically assess the challenges and limitations inherent in metagenomics experimentation, available technologies and computational analysis methods. Beyond technical methodologies, we explore the application of metagenomics across various domains, including human health, agriculture and environmental monitoring. Looking ahead, we advocate for the development of more robust computational frameworks and enhanced interdisciplinary collaborations. This Primer serves as a comprehensive guide for advancing the precision and applicability of metagenomic studies, positioning them to address the complexities of microbial ecology and their broader implications for human health and environmental sustainability. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. IntroductionDuring the COVID-19 Delta variant surge, the CLAIRE cross-sectional study sampled saliva from 120 hospitalized patients, 116 of whom had a positive COVID-19 PCR test. Patients received antibiotics upon admission due to possible secondary bacterial infections, with patients at risk of sepsis receiving broad-spectrum antibiotics (BSA). MethodsThe saliva samples were analyzed with shotgun DNA metagenomics and respiratory RNA virome sequencing. Medical records for the period of hospitalization were obtained for all patients. Once hospitalization outcomes were known, patients were classified based on their COVID-19 disease severity and the antibiotics they received. ResultsOur study reveals that BSA regimens differentially impacted the human salivary microbiome and disease progression. 12 patients died and all of them received BSA. Significant associations were found between the composition of the COVID-19 saliva microbiome and BSA use, between SARS-CoV-2 genome coverage and severity of disease. We also found significant associations between the non-bacterial microbiome and severity of disease, withCandida albicansdetected most frequently in critical patients. For patients who did not receive BSA before saliva sampling, our study suggestsStaphylococcus aureusas a potential risk factor for sepsis. DiscussionOur results indicate that the course of the infection may be explained by both monitoring antibiotic treatment and profiling a patient’s salivary microbiome, establishing a compelling link between microbiome and the specific antibiotic type and timing of treatment. This approach can aid with emergency room triage and inpatient management but also requires a better understanding of and access to narrow-spectrum agents that target pathogenic bacteria. 
    more » « less
  3. Abstract BackgroundPredicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has been a goal of decades of experimental work, especially for some model gene families including light-sensitive opsin proteins. Opsins can be expressed in vitro to measure light absorption parameters, including λmax - the wavelength of maximum absorbance - which strongly affects organismal phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed, uncompiled, and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between genotype and phenotype. ResultsHere, we report a newly compiled database of all heterologously expressed opsin genes with λmaxphenotypes called the Visual Physiology Opsin Database (VPOD).VPOD_1.0contains 864 unique opsin genotypes and corresponding λmaxphenotypes collected across all animals from 73 separate publications. We useVPODdata anddeepBreaksto show regression-based machine learning (ML) models often reliably predict λmax, account for non-additive effects of mutations on function, and identify functionally critical amino acid sites. ConclusionThe ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular-evolutionary patterns governing phenotype, will inform functional and evolutionary connections to an organism’s ecological niche, and may be used more broadly forde-novoprotein design. Together, our database, phenotype predictions, and model comparisons lay the groundwork for future research applicable to families of genes with quantifiable and comparable phenotypes. Key PointsWe introduce the Visual Physiology Opsin Database (VPOD_1.0), which includes 864 unique animal opsin genotypes and corresponding λmaxphenotypes from 73 separate publications.We demonstrate that regression-based ML models can reliably predict λmax from gene sequence alone, predict non-additive effects of mutations on function, and identify functionally critical amino acid sites.We provide an approach that lays the groundwork for future robust exploration of molecular-evolutionary patterns governing phenotype, with potential broader applications to any family of genes with quantifiable and comparable phenotypes. 
    more » « less
  4. Abstract Multi-omics approaches have been successfully applied to investigate pregnancy and health outcomes at a molecular and genetic level in several studies. As omics technologies advance, research areas are open to study further. Here we discuss overall trends and examples of successfully using omics technologies and techniques (e.g., genomics, proteomics, metabolomics, and metagenomics) to investigate the molecular epidemiology of pregnancy. In addition, we outline omics applications and study characteristics of pregnancy for understanding fundamental biology, causal health, and physiological relationships, risk and prediction modeling, diagnostics, and correlations. 
    more » « less
  5. Abstract Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19. 
    more » « less
  6. Abstract SARS-CoV-2 (CoV) is the etiological agent of the COVID-19 pandemic and evolves to evade both host immune systems and intervention strategies. We divided the CoV genome into 29 constituent regions and applied novel analytical approaches to identify associations between CoV genomic features and epidemiological metadata. Our results show that nonstructural protein 3 (nsp3) and Spike protein (S) have the highest variation and greatest correlation with the viral whole-genome variation. S protein variation is correlated with nsp3, nsp6, and 3′-to-5′ exonuclease variation. Country of origin and time since the start of the pandemic were the most influential metadata associated with genomic variation, while host sex and age were the least influential. We define a novel statistic—coherence—and show its utility in identifying geographic regions (populations) with unusually high (many new variants) or low (isolated) viral phylogenetic diversity. Interestingly, at both global and regional scales, we identify geographic locations with high coherence neighboring regions of low coherence; this emphasizes the utility of this metric to inform public health measures for disease spread. Our results provide a direction to prioritize genes associated with outcome predictors (e.g., health, therapeutic, and vaccine outcomes) and to improve DNA tests for predicting disease status. 
    more » « less
  7. Wren, Jonathan (Ed.)
    Abstract Motivation The discovery of biologically interpretable and clinically actionable communities in heterogeneous omics data is a necessary first step toward deriving mechanistic insights into complex biological phenomena. Here, we present a novel clustering approach, omeClust, for community detection in omics profiles by simultaneously incorporating similarities among measurements and the overall complex structure of the data. Results We show that omeClust outperforms published methods in inferring the true community structure as measured by both sensitivity and misclassification rate on simulated datasets. We further validated omeClust in diverse, multiple omics datasets, revealing new communities and functionally related groups in microbial strains, cell line gene expression patterns and fetal genomic variation. We also derived enrichment scores attributable to putatively meaningful biological factors in these datasets that can serve as hypothesis generators facilitating new sets of testable hypotheses. Availability and implementation omeClust is open-source software, and the implementation is available online at http://github.com/omicsEye/omeClust. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  8. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies predominantly to nuclear material. Many aspects of disease pathology are mediated by the deposition of nucleic acid containing immune complexes, which also induce the type 1interferon response, a characteristic feature of SLE. Notably, SLE is remarkably heterogeneous, with a variety of organs involved in different individuals, who also show variation in disease severity related to their ancestries. Here, we probed one potential contribution to disease heterogeneity as well as a possible source of immunoreactive nucleic acids by exploring the expression of human endogenous retroviruses (HERVs). We investigated the expression of HERVs in SLE and their potential relationship to SLE features and the expression of biochemical pathways, including the interferon gene signature (IGS). Towards this goal, we analyzed available and new RNA-Seq data from two independent whole blood studies using Telescope. We identified 481 locus specific HERV encoding regions that are differentially expressed between case and control individuals with only 14% overlap of differentially expressed HERVs between these two datasets. We identified significant differences between differentially expressed HERVs and non-differentially expressed HERVs between the two datasets. We also characterized the host differentially expressed genes and tested their association with the differentially expressed HERVs. We found that differentially expressed HERVs were significantly more physically proximal to host differentially expressed genes than non-differentially expressed HERVs. Finally, we capitalized on locus specific resolution of HERV mapping to identify key molecular pathways impacted by differential HERV expression in people with SLE. 
    more » « less