Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The aim of this study is to provide a better understanding of the heterogeneities in user-product relationships and their consequences regarding the household energy predictions. Several supervised and unsupervised machine learning algorithms have been applied to a comprehensive data set of residential energy consumptions collected by the US Energy Information Association. The results of the analyses reveal that, while the heterogeneities in the use-phase of consumer electronics could skew their environmental assessment results, they do not possess the same discriminant influences on the household electricity consumption compared to certain socio-demographics or usage of home appliances. Various cross-comparisons among product features and use-phase behaviors have been made and the most important predictors of the residential electricity consumption based on the data have been introduced. Product-level and user-level discussions on the findings have also been provided.more » « less
-
Since its emergence, the cloud manufacturing concept has been transforming the manufacturing and remanufacturing industry into a big data and service-oriented environment. The aggressive push toward data collection in cloud-based and cyber-physical systems provides both challenges and opportunities for predictive analytics. One of the key applications of predictive analytics in such domains is predictive quality management that aims to fully exploit the potentials provided by the enormous data collected via cloud-based systems. As a case study, a data set of hard disk drives’ Self-Monitoring, Analysis and Reporting Technology (SMART) attributes from a cloud-storage service provider has been analyzed to derive some insights about the challenges and opportunities of using product lifecycle data. An analysis of time-to-failure monitoring of hard disk drives in real-time has been carried out and the corresponding challenges have been discussed.more » « less
-
Smart manufacturing in an Industry 4.0 setting requires developing unique infrastructures for sensing, wired and wireless communications, cyber-space computations and information tracking. While an exponential growth in smart infrastructures may impose drastic burdens on the environment, the conventional Life Cycle Assessment (LCA) techniques are incapable of quantifying such impacts. Therefore, there is a gap between advances in the manufacturing domain and the environmental assessment field. The capabilities offered by smart manufacturing can be applied to LCA with the aim of providing advanced impact assessment, and decision-making mechanisms that match the needs of its manufacturing counterpart.more » « less
-
As electronic waste (e-waste) becomes one of the fastest growing environmental concerns, remanufacturing is considered as a promising solution. However, the profitability of take back systems is hampered by several factors including the lack of information on the quantity and timing of to-be-returned used products to a remanufacturing facility. Product design features, consumers’ awareness of recycling opportunities, socio-demographic information, peer pressure, and the tendency of customer to keep used items in storage are among contributing factors in increasing uncertainties in the waste stream. Predicting customer choice decisions on returning back used products, including both the time in which the customer will stop using the product and the end-of-use decisions (e.g. storage, resell, through away, and return to the waste stream) could help manufacturers have a better estimation of the return trend. The objective of this paper is to develop an Agent Based Simulation (ABS) model integrated with Discrete Choice Analysis (DCA) technique to predict consumer decisions on the End-of-Use (EOU) products. The proposed simulation tool aims at investigating the impact of design features, interaction among individual consumers and socio-demographic characteristics of end users on the number of returns. A numerical example of cellphone take-back system has been provided to show the application of the model.more » « less
An official website of the United States government

Full Text Available